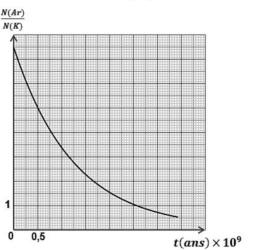
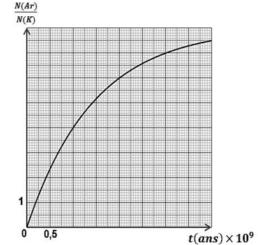
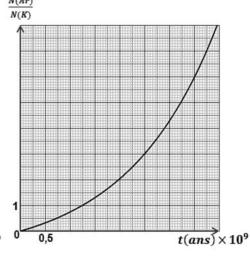
الجمهورية الجزائرية الديمقراطية الشعبية

ثانوية: الشهيد لعروسي العربي/سيدي الحسني.

المـــــدة: 1 ساعـــــ السنة الدراسية: 2018/2017


المستوى: ثالثة علوم تجريبية وتقي رياضي


الفرض الثاني للثلاثي الأول في مادة العلوم الفيزيائية


التمرين الأول(10 نقاط):

البوتاسيوم 40 $^{(40}K)$ الموجود في الصخور يتفكك إلى غاز الأرغون $^{(40}Ar)$ المستقر حسب النمط $^{(40}K)$ و الذي يبقى محجوز ا داخل الصخور ، حيث يمكن تقدير عمر ها باستعمال النشاط الإشعاعي للبوتاسيوم-40.

- 1- أكتب معادلة التفكك علما أن عدد النترونات في نواة الأرغون هو 22.
- λ و الزمن λ و الزمن λ ديث النصبة λ بدلالة ثابت التفكك λ و الزمن λ ديث λ و الزمن λ ديث عند العقبار عدد أنوية الأرغون معدومة عند اللحظة الابتدائية ، عبّر عن النسبة λ N(K) عدد أنوية الأرغون و N(K) بدلالة الزمن N(K) بدلالة الزمن N(K) عدد المنحنيات التالية تطور النسبة بين عدد أنوية الأرغون N(K) وعدد أنوية البوتاسيوم N(K) بدلالة الزمن N(K)

أ-ما هو المنحنى المناسب؟ علَّل جو ايك.

. 40 و بالاستعانة بالمنحنى المناسب أوجد قيمته بالنسبة للبوتاسيوم $t_{1/2}$

4- عند تحليل عينة من صخرة وجدت النسبة $\frac{N(k)}{N(4r)} = 0,2$ ، استنتج عمر الصخرة بطريقتين.

التمرين الثاني(10 نقاط):

 $m_n=1,0087 u \; m_P=1,0073 u \; m(^3_2 He)=3,0149 \; u$ المعطیات: $1u = 931,5 Mev/C^2$

- إليك الجدول التالى:

$_{26}^{A}Fe$	⁸ ₄ Be	$_{3}^{7}Li$	²³⁵ ₉₂ U	⁴ ₂ He	$_{2}^{3}He$	² ₁ H	1 ₁ H	النواة
492.2	56.4	39.3		28		2.2	0	$(Mev) \; E_{\ell}$ طاقة الربط للنواة
8.78	7.05	5.61	7.6			1.1		$rac{E_\ell}{A}$ طاقة الربط لكل نكليون MeV / $nucleon$

- 1- كيف تبرّر قيمة طاقة الربط للنواة H?
- 22222222222 من المربط النواة ^{3}He ، ثم أستنتج طاقة الربط لكل نكليون لها ^{3}He

3as.ency-education.com

- $^{235}_{92}U$ و طاقة الربط لكل نكليون للنواة $^{4}_{2}He$ و طاقة الربط للنواة $^{235}_{92}U$
 - $^{A}_{Z}Fe$ احسب قيمة العدد الكتلي $^{A}_{Z}$ للنواة -4
- 5- كيف تبرّر إصدار الأنوية الثقيلة لأنوية الهليوم-4 (جسيمات ألفا) و عدم إصدار ها لأنوية الهليوم-3؟
 - $^{2}_{3}Li$ و $^{2}_{1}H$ انطلاقا من النواتين $^{8}_{4}Be$ انطلاقا من النواتين $^{6}_{1}$
 - أ- رتُّب هذه الأنوية حسب تزايد استقراراها.
 - ب- اكتب معادلة التفاعل النووي الموافق، كيف نسمي هذا النوع من التفاعلات؟ اذكر شروط تحقيقه.
 - ج- احسب الطاقة المتحررة عن هذا التفاعل بوحدة Mev

التوفيق والنجاح في شهادة الباكالوريا 2018/الأستاذ محمد شعبان