

الجمهورية الجزائرية الديموقراطية الشعبية

مؤسسة التربية و التعليم الخاصة _ أوبينياتر _

وزارة التربية الوطنية

دورة جوان 2022

الامتحان التجريبي لشهادة التعليم المتوسط

المدة: ساعتان

اختبار في مادة: الرياضيات

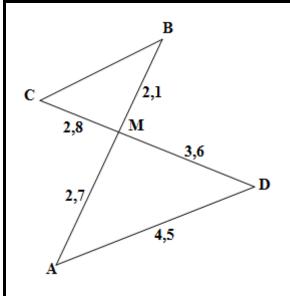
الجزء الأول (14ن)

التمرين الأول (4ن)

$$A = \frac{48 \times 10^6 \times 17.4 \times 10^{-2}}{4 \times 10^6} \; ; \; B = 5\sqrt{50} - \; 2\sqrt{32} + \; 5\sqrt{2} \; ; \; C = \frac{7}{1512} - \; \frac{5}{3} \; imes \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \; \frac{5}{3} \; \times \; \frac{4}{7} \; ; \; C = \frac{1512}{1512} - \;$$

- 1. احسب A ثم اكتبه كتابة علمية.
- \mathbf{a} کتب \mathbf{a} علی الشکل $\mathbf{a}\sqrt{\mathbf{b}}$ (حیث \mathbf{a} و \mathbf{a} عددان طبیعیان و \mathbf{b} أصغر ما یمكن).
 - .C. احسب ($\frac{720}{1512}$, ثم اختزل $\frac{720}{1512}$ ، ثم احسب 3

التمرين الثاني (3.5ن)


 $F = 9x^2 - 12x + 4 - (4x + 7)(3x - 2)$ تعطى العبارة:

- $\mathbf{F} = -3\mathbf{x}^2 25\mathbf{x} + 18$: تحقق بالنشر أن
- 2. حلل العبارة 4 + 2x 12x + 4 ثم استنتج تحليلا للعبارة F إلى جداء عاملين من الدرجة الأولى.
 - (3x-2)(-x-9)=0:
 - لمتر اجحة $\mathbf{F} \geq -3\mathbf{x}^2$ ثم مثل حلولها بيانيا.

التمرين الثالث (4.5ن)

المستوي منسوب إلى معلم متعامد و متجانس (\vec{I} ; \vec{J}) (الوحدة 1cm).

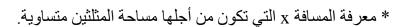
- 1. علم النقاط: (1: C(2; 1); B(2; 3); A(-3; 1)
 - 2. احسب المسافة BC.
- ABC علما أن: AC = 5cm و $ABC = \sqrt{29}cm$ ، بر هن أن المثلث ABC قائم.
 - 4. احسب إحداثيات M منتصف [AB].
- N أنشئ النقطة M صورة M بالدوران الذي مركزه M و زاويته M، ثم استنتج من الشكل إحداثيتي النقطة M

التمرين الرابع (2ن)

في الشكل المقابل، (AB) و (CD) متقاطعان في النقطة M (وحدة الطول هي السنتيمتر والشكل ليس مرسوما بأبعاده الحقيقية).

- .(AD) // (BC) بين أن
 - 2. احسب الطول BC.

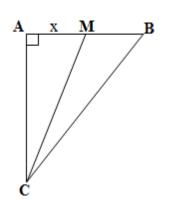
3. علما أن المثلث ADM قائم في M، احسب قيس الزاوية \widehat{A} بالتدوير إلى الوحدة من الدرجة.


الجزء الثاني (6ن)

الوضعية الإدماجية (6ن)

للسيد باديس قطعة أرض، يريد تقسيمها على ابنيه بالتساوي، هذه القطعة هي على شكل مثلث ABC قائم في A، حيث: $AC = 80m \cdot AB = 50m$.

1. احسب مساحة قطعة الأرض الكلية ثم استنتج مساحة قطعة الأرض التي يأخذها كل ابن.


بعد تفكير، قام السيد باديس بتقسيم هذه الأرض كما هو مبين في الشكل المقابل حيث وضع: AM = x

 \times معرفة x الذي تكون عنده مساحة BMC لا تتجاوز \times

فسمع ابنه طارق واقترح عليه أن يعبر عن مساحة المثلث AMC بدالة f وعن مساحة المثلث g بدالة g ثم يقوم بتمثيلهما بيانيا ويستنتج منه الإجابة على المشكلين السابقين.

2. برأيك، ما هي الخطوات التي قام بها طارق حتى شكره والده على مساعدته؟

الجزء الأول

التمرين الأول

1. حساب A ثم كتابته كتابة علمية.

$$A = \frac{48 \times 10^{6} \times 17.4 \times 10^{-2}}{4 \times 10^{6}}$$

$$A = \frac{48 \times 17.4}{4} \times \frac{10^{6} \times 10^{-2}}{10^{6}}$$

$$A = 208.8 \times 10^{-2}$$

$$A = 2.088 \times 10^{2} \times 10^{-2}$$

$$A = 2.088 \times 10^{0}$$

2. كتابة a على الشكل $a\sqrt{b}$ (حيث a و a عددان طبيعيان و a أصغر ما يمكن).

$$B = 5\sqrt{50} - 2\sqrt{32} + 5\sqrt{2}$$

$$B = 5\sqrt{25 \times 2} - 2\sqrt{16 \times 2} + 5\sqrt{2}$$

$$B = 25\sqrt{2} - 8\sqrt{2} + 5\sqrt{2}$$

$$B = 22\sqrt{2}$$

.C حساب (1512; 720) مُم اختزال (1512 $\frac{7}{1512}$, ثم حساب 3

$$PGCD(1512;720) = 72$$

$$\frac{720}{1512} = \frac{720 \div 72}{1512 \div 72} = \frac{10}{21}$$

$$C = \frac{10}{21} - \frac{5}{3} \times \frac{4}{7}$$

$$C = \frac{10}{21} - \frac{20}{21}$$

$$C = -\frac{10}{21}$$

التمرين الثانى

$$F = 9x^2 - 12x + 4 - 12x^2 + 8x - 21x + 14$$

$$F = -3x^2 - 25x + 18$$

 $9x^2 - 12x + 4$ نحلل العبارة 2.

$$9x^2 - 12x + 4 = (3x - 2)^2$$

ثم نستنتج تحليلا للعبارة ${f F}$ إلى جداء عاملين من الدرجة الأولى.

$$F = \frac{9x^2 - 12x + 4}{4} - (4x + 7)(3x - 2)$$

$$F = \frac{(3x - 2)^2}{4} - (4x + 7)(3x - 2)$$

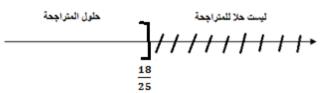
$$F = (3x - 2)[3x - 2 - (4x + 7)]$$

F = (3x - 2)(-x - 9)

$$(3x-2)(-x-9)=0$$
: 3.

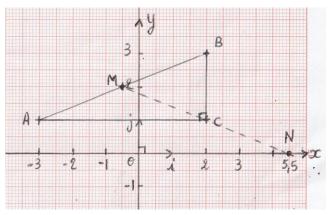
ينتج من المعادلة: إما: $\mathbf{x} - \mathbf{9} = \mathbf{0}$ أو $\mathbf{x} - \mathbf{2} = \mathbf{0}$ أي: $\mathbf{x} = \frac{2}{3}$ ؛ $\mathbf{x} = -9$

$$\frac{2}{3}$$
 و منه، حلول المعادلة $(x+3)(x-1)=0$ هي: 9- و


4. حل المتراجحة $\mathbf{F} \geq -3\mathbf{x}^2$ ثم تمثیل حلولها بیانیا.

$$-3x^2 - 25x + 18 \ge -3x^2$$

$$-25x \ge -18$$


$$x \le \frac{18}{25}$$

و منه حلول المتراجحة، هي كل قيم $_{\rm X}$ الأصغر من أو تساوي $_{\rm 25}^{\rm 18}$ ، و تمثيلها البياني هو:

التمرين الثالث

. تعليم النقاط: (1: A(-3; 1)) B(2; 3); A(-3; 1)

استنتج من الشكل إحداثيتي النقطة N(4,5; 0): N

2. حساب المسافة BC.

BC =
$$\sqrt{(x_C - x_B)^2 + (y_C - y_B)^2}$$

BC = $\sqrt{(2 - 2)^2 + (1 - 3)^2}$
BC = 2cm

ABC فنبر هن أن المثلث AC = 5cm و AC = 5cm نبر هن أن المثلث قائم.

*
$$AB^2 = \sqrt{29}^2 = 29$$

* $AC^2 + BC^2 = 5^2 + 2^2 = 25 + 4 = 29$

 $AB^2 = AC^2 + BC^2$ حسب نظرية فيناغورس العكسية

و منه المثلث ABC قائم في C.

الجزء الثاني الوضعية الإدماجية

1. حساب مساحة قطعة الأرض الكلية

$$S = \frac{AB \times AC}{2} = \frac{50 \times 80}{2} = \frac{4000}{2} = 2000m^2$$

ثم استنتاج مساحة قطعة الأرض التي يأخذها كل ابن.

$1000m^{2}$

2. الخطوات التي قام بها طارق حتى شكره والده على مساعدته

*
$$f(x) = \frac{80}{2}x$$

f(x) = 40x

*
$$g(x) = (AB - x)AC = (50 - x)80 = 4000 - 80x$$

g(x) = -40x + 2000

ننشئ المنحنى البياني للدالتين ${f f}$ و ${f g}$ في نفس المعلم. أ. بما أن الدالة ${f f}$ خطية لأنها من الشكل ${f f}$ ${f a}$ ، فتمثيلها البياني عبارة عن مستقيم يمر من المبدأ، يكفي لرسمه تعيين نقطتين:

* النقطة الأولى: نقطة مبدأ المعلم (0; 0).

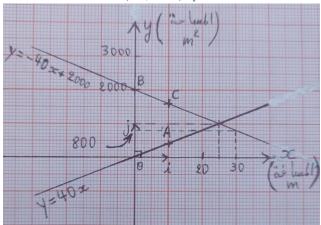
f(10) = 400 : فنحصل على: X = 10 خانقطة الثانية A: النقطة الثانية

و منه إحداثيات النقطة A هي: (A(10; 400).

ب. بما أن الدالة \mathbf{g} تآلفية لأنها من الشكل و $\mathbf{g}(\mathbf{x}) = \mathbf{a}\mathbf{x} + \mathbf{b}$ البياني بما أن الدالة و تآلفية لأنها من الشكل

عبارة عن مستقيم لا يمر من المبدأ، يكفي لرسمه تعيين نقطتين:

* النقطة الأولى B: نأخذ x=0 فنحصل على:


g(0) = 2000

و منه إحداثيات النقطة B هي: (B(0; 2000).

* النقطة الثانية C: نأخذ x = 10 فنحصل على:

g(10) = 1600

و منه إحداثيات النقطة C هي: (1600 ; 1600).

و منه حسب التمثيل البياني للدالتين فإن:

- * المسافة x التي تكون من أجلها مساحة المثلثين متساوية هي: 25m
- 30m :هي: $800m^2$ لا تتجاوز $800m^2$ هي x

4. حساب إحداثيات M منتصف [AB].

$$M\left(\frac{x_B+x_A}{2}; \frac{y_B+y_A}{2}\right)$$

$$M\left(\frac{2-3}{2}; \frac{3+1}{2}\right)$$

$$M(-0.5; 2)$$

5. استنتاج من الشكل إحداثيتي النقطة N.

التمرين الرابع

.(AD) // (BC) نبين أن

بما أن: * (CD) و (AB) متقاطعان في B.

* النقاط: A ; B ; M على استقامية و بنفس الترتيب.

* النسب·

$$\frac{MB}{MA} = \frac{2.1}{2.7} = 0.77$$

$$\frac{MC}{MD} = \frac{2.8}{3.6} = 0.77$$

$$\frac{MB}{MA} = \frac{MC}{MD}$$

فإن حسب عكس نظرية طالس : (BC) // (BC)

2. احسب الطول BC.

بما أن: * (CD) و (AB) متقاطعان في B.

* النقاط: A; B; M على استقامية و بنفس الترتيب.

(AD) // (BC) *

فإن حسب نظرية طالس نكتب:

$$\frac{MB}{MA} = \frac{MC}{MD} = \frac{BC}{AD}$$

$$\frac{2,1}{2,7} = \frac{2,8}{3,6} = \frac{BC}{4,5}$$

 $\frac{2,8}{3,6} = \frac{BC}{4,5}$:نأخذ النسبتين

BC =
$$\frac{2,8 \times 4,5}{3.6}$$
 = 3,5cm

3. حساب قيس الزاوية ADM بالتدوير إلى الوحدة من الدرجة.

$$\sin\widehat{ADM} = \frac{AM}{AD} = \frac{2,7}{4,5}$$

$$\widehat{ADM} = \sin^{-1}(\frac{2.7}{4.5}) = 36^{\circ},86989765 \approx 37^{\circ}$$