
ثانية علوم تجريبية الفرض الأول للفصل الثاني في مادة العلوم الطبيعية جمادي الاولى 1439

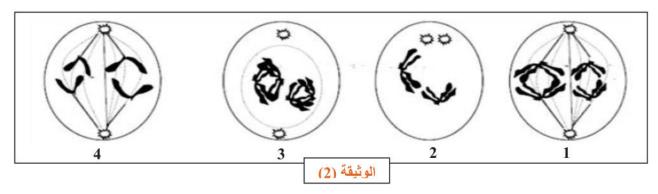
I - اهتم الباحثون كذلك بقياس كمية الـADN في الخلايا و تطور ها خلال تشكل الأمشاج ، فتحصلوا على النتائج التالية:

النتانج		النمط الخلوي
1.38 ملغ ADN من 4.3 × 10 ⁸ خلية	القياس رقم 1	
2.10 ملغ ADN من 6.6 × 10 ⁸ خلية	القياس رقم 2	خلايا جسمية
1.16 ملغ ADN من 7.3 × 10 ⁸ خلية	القياس رقم 1	نطاف
2.05 ملغ ADN من 12.6× 10 ⁸ خلية	القياس رقم 2	تقساف

الوثيقة - 1 -

- 1- أحسب متوسط كمية الـ ADN في الخلية الجسمية الواحدة و في النطفة الواحدة .
 - 2- ماذا تستنتج من مقارنة النتاج المتحصل عليها ؟ قدم تفسيرا لها .
 - II أثناء تشكّل النطاف عند الفأر تمكنا من انجاز أشكال الوثيقة (2) .

- 1 حدد الظاهرة التي تعبر عنها هذه الأشكال ، مع تعليل إجابتك .
- 2 رتب الأشكال حسب تسلسلها الزمني ، مع وضع عنوان لكل شكل .
- 3 اعتمادا على جوابك عن السؤال (I I) ، أحسب كمية الـ ADN الموجودة في الخلية الممثلة بالشكل (3) .
 - 4 استخرج الصيغة الصبغية للخلية التي تحدث فيها هذه الظاهرة.


ثانية علوم تجريبية الفرض الأول للفصل الثاني في مادة العلوم الطبيعية جمادي الاولى 1439

I – اهتم الباحثون كذلك بقياس كمية الـADN في الخلايا و تطور ها خلال تشكل الأمشاج ، فتحصلوا على النتائج التالية:

النتانج		النمط الخلوي
1.38 ملغ ADN من 4.3 × 10 ⁸ خلية	القياس رقم 1	
2.10 ملغ ADN من 6.6 × 10 ⁸ خلية	القياس رقم 2	خلايا جسمية
1.16 ملغ ADN من 7.3 × 10 ⁸ خلية	القياس رقم 1	نطاف
2.05 ملغ ADN من 12.6× 10 ⁸ خلية	القياس رقم 2	تكسك

الوثيقة - 1 -

- 1 أحسب متوسط كمية الـ ADN في الخلية الجسمية الواحدة و في النطفة الواحدة .
 - 2- ماذا تستنتج من مقارنة النتاج المتحصل عليها ؟ قدم تفسيرا لها .
 - II أثناء تشكّل النطاف عند الفأر تمكنا من انجاز أشكال الوثيقة (2) .

- 1 حدد الظاهرة التي تعبر عنها هذه الأشكال ، مع تعليل إجابتك .
- 2 رتب الأشكال حسب تسلسلها الزمني ، مع وضع عنوان لكل شكل .
- 3 اعتمادا على جوابك عن السؤال (I I) ، أحسب كمية الـ ADN الموجودة في الخلية الممثلة بالشكل (3) .
 - 4 استنتج الصيغة الصبغية للخلية التي تحدث فيها هذه الظاهرة .

- III نحضر ثلاثة مزارع خلوية من نفس النوع في محلول مغذي يحتوي على التيميدين المشع .
- تحتوي المزرعة الأولى على خلية واحدة ومادة كولشيسين (مادة تمنع تشكل المغزل اللالوني وبالتالي لا يحدث الانقسام الهيولي للخلية المعاملة به).
 - تحتوي المزرعة الثانية على خلية عصبية شديدة التمايز.
 - تحتوي المزرعة الثالثة على خليتين.
- أ- مثل بو أسطة منحنيات تطور كمية الـ ADN في المزارع الثلاثة بعد 36 ساعة. (مدة الإنقسام 18 ساعة). ب- ماهو عدد الخلايا في كل مزرعة ؟
- ج- ماهي نسبة جزيئة الـ ADN التي تتركب من سلسلتين مشعتين في كل من المزر عتين (2 و 3) وذلك بعد 36 ساعة ؟ علل إجابتك مستعينا برسومات تخطيطية.
 - . $^{\circ}$ مثل نظريا قطعة من جزيئة الـ ADN يبلغ طولها $^{\circ}$ 8 تحتوي على $^{\circ}$ 5 رابطة هيدروجينية . $^{\circ}$ (حساب عدد القواعد الآزوتية مطلوب).

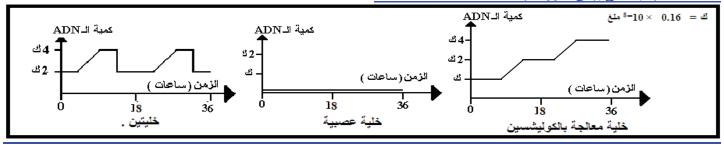
"ومن رام الفلاح في العلم وتحصيل البغية منه، مع كثرة الأكل والشرب وكثرة النوم فقد رام مستحيلًا في العادة."

[-ابن جماعة رحمه الله -]

- III . نحضر ثلاثة مزارع خلوية من نفس النوع في محلول مغذي يحتوي على التيميدين المشع .
 ـ تحتوي المزرعة الأولى على خلية واحدة ومادة كولشيسين (مادة تمنع تشكل المغزل اللالوني وبالتالي لا يحدث الإنقسام الهيولي للخلية المعاملة به).
 - تحتوي المزرعة الثانية على خلية عصبية شديدة التمايز.
 - تحتوي المزرعة الثالثة على خليتين.
- أ- مثل بواسطة منحنيات تطور كمية الـ ADN في المزارع الثلاثة بعد 36 ساعة. (مدة الإنقسام 18 ساعة). ب- ماهو عدد الخلايا في كل مزرعة ؟
- ج- ماهي نسبة جزيئة الـ ADN التي تتركب من سلسلتين مشعتين في كل من المزر عتين (2 و 3) وذلك بعد 36 ساعة ؟ علل إجابتك مستعينا برسومات تخطيطية.

VI مثل نظريا قطعة من جزيئة الـ ADN يبلغ طولها 68 °A تحتوي على 51 رابطة هيدروجينية . (حساب عدد القواعد الأزوتية مطلوب).

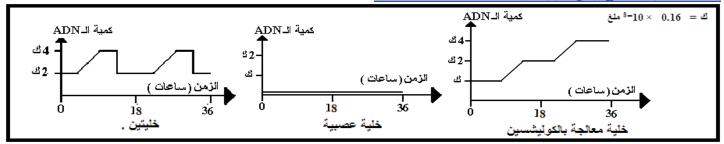
"ومن رام الفلاح في العلم وتحصيل البغية منه، مع كثرة الأكل والشرب وكثرة النوم فقد رام مستحيلًا في العادة."


[-ابن جماعة رحمه الله -]

2as.ency-education.com

الفرض الأول للفصل الثاني في مادة العلوم الطبيعية

1-I - أ - حساب متوسط كمية الـ ADN في الخلية الواحدة:


- الخلية الجسمية: 1.38 + 2.10 ملغ ADN (6.6 + 4.3) × 10⁸ خلية .
- س ملغ ADN1 خلية وومنه س = $(2.10 + 1.38) \div (2.10 + 8 8 8 10 \times 0.32)$ ملغ ADN في خلية واحدة ADN المنظ ADN المنظ ADN المنظ ADN المنظ المن
- س ملغ ADN 1 خلية ومنه $MDN = \frac{1.10 + 1.10}{1.0000} \times \frac{1.10 + 1.10}{1.0000} \times \frac{1.10 \times 1.10}{1.0000} \times \frac{1.10$
- كمية الـ \overrightarrow{ADN} في الخلية الجنسية (النّطفة) مساوية لنصف كميتها في الخلية الجسمية . ك بسية = 2ك جنسية = $2 \times \frac{0.16 \times 0.16}{10 \times 0.16}$ ملغ تقديم تفسير للاستنتاجات :
- النطاف تنتج من انقسام الخلايا الجسمية انقساما ميوزيا ، حيث تتكون الصبغيات أساسا من الـ ADN وبالتالي بحدوث اختزال لعدد الصبغيات نتيجة افتراقها في الانفصالي أثناء تشكل الأعراس (الأمشاج) خلال الانقسام المنصف ،
 - الظاهرة المدروسة ألانقسام المنصف التعليل تشكل رباعيات كروماتيدية في 3 ثم انفصالها في 1 و انشطار صبغياتها في 4.
 - 2 رتب أشكال الوثيقة 2 حسب تسلسلها الزمني . 3 ___ 1 ___ 2 ___ 4 ____
 - 3- التعرف على المراحل : 3- : تمهيدية للاختزالي 1: انفصالية للاختزالي..... 2: تمهيدية للمتساوي 4: انفصالية للمتساوي.
 - 3- كمية الـ ADN الموجودة في الخلية الممثلة بالشكل (3) : يكون ضعف الموجود في الجسمية لحدوث تضاعف قبل الانقسام المنصف:
 - $2 \times 0.32 \times 0.0^{-8}$ ملغ $= 0.64 \times 0.0^{-8}$ ملغ ADN في خلية واحدة. 4- الصيغة الصبغية للخلية التي تحدث بها الظاهرة : 2 ن = 4
 - اا الـ الـ تمثيل بمنحنى بيانى تطور كمية الـ ADN خلال 36 ساعة:

الفرض الأول للفصل الثاني في مادة العلوم الطبيعية

I – I – أ – حساب متوسط كمية الـ ADN في الخلية الواحدة:

- الخلية الجسمية : 1.38 + 2.10 + 1.38 ملغ ADN (6.6 + 4.3) \times 108 خلية (1.38 + 3.10 + 1.38 خلية واحدة ملغ ADN في خلية واحدة المجامع المجامع
 - الـــنــطـــاف : 2.05 + 1.16 ملغ ADN (12.6 + 7.1) × 10⁸ خلية .
- س ملغ ADN 1 خلية ومنه $\omega = (1.16 + 1.16) \div (12.6 + 7.1) \times (12.6 + 8.10) \times (12.6 + 8.10)$ في خلية واحدة ω 1 خلية ومنه ω 1 في خلية واحدة ω 1 المقارنة بين النتاج المتحصل عليها :
- كمية الـ ADN في الخلية الجنسية (النطفة) مساوية لنصف كميتها في الخلية الجسمية . كجسمية = 2ك جنسية = 2× <u>0.16 × 10 × ^{8 –18} ملغ</u> تقديم تفسير للاستنتاجات :
- النطاف تنتج من انقسام الخلايا الجسمية انقساما ميوزيا ، حيث تتكون الصبغيات أساسا من الـ ADN وبالتالي بحدوث اختزال لعدد الصبغيات نتيجة افتراقها في الانفصالي أثناء تشكل الأعراس (الأمشاج) خلال الانقسام المنصف ،
 - $_{1}$ -1-الظاهرة المدروسة . الانقسام المنصف التعليل تشكل رباعيات كروماتيدية في $_{2}$ ثم انفصالها في $_{3}$ و انشطار صبغياتها في $_{4}$.
 - 2 رتب أشكال الوثيقة 2 حسب تسلسلها الزمني . 3 ___ 1 ___ 2 ___ 4 ____
 - 3- التعرف على المراحل : 3- : تمهيدية للاختزالي 1: انفصالية للاختزالي 2 : تمهيدية للمتساوي 4 : انفصالية للمتساوي .
 - 3- كمية الـ ADN الموجودة في الخلية الممثلة بالشكل (3) يكون ضعف الموجود في الجسمية لحدوث تضاعف قبل الانقسام المنصف: \times 2- \times 10- \times ملغ \times 2- \times 10- \times ملغ \times 10- \times
 - الصيغة الصبغية للخلية التي تحدث بها الظاهرة : 2 ن = 4
 - III ــا- تمثيل بمنحنى بيانى تطور كمية الـ ADN خلال 36 ساعة:

2as.ency-education.com

ب- عدد الخلايا في كل مزرعة: المزرعة الأولى خلية واحدة - مادة الكوليشيسين لا تسمح بانقسام هيولي للخلية الأم-المزرعة الثانيةخلية واحدة – العصبية لا تنقسم – المزرعة الثالثة خلايا – انقسامين متتاليين لخليتين كل واحدة تعطى 4 خلايا – ج- نسبة جزيئة الـ ADN المتركبة من سلسلتين مشعتين خلال 63سا المزرعة 3 المزرعة 3 حيث كل خلية بها سلسلتي<u>ADN</u> غير مشعتين تدخل في التضاعف الأول للمرحلة البينية و تتخذ كل سلسلة كقالب لبناء سلسلة مشعة في جزيئة ADN الهجينة في كل خلية بنت ناتجة ثم هذه الجزيئة الأخيرة تدخل في التضاعف الثاني للمرحلة البينية الموالية و تتخذ كل سلسلة كقالب لبناء سلسلة مشعة في جزيئة ADN الناتجة التي تكون بعضها هجينة بنسبة 50.% و البقية نفس النسبة مشعة . 1 المخطط لكل خلية الجيل الثاني في المزرعة الثالثة: او ADN 4 و 50 هجين ADN أبوي هجين%۱..ADN۱۰۰ % غير مشع 2و 3 ADN 50 مشع سلسلة مشعة و سلسلة غير مشعة VI الحساب النظري لدينا عدد أزواج القواعد الأزوتية: 68 ÷ 3.4 = 20 زوج من القواعد أي 40 قاعدة آزوتية حيث 3.4 طول النكلوتيدة الواحدة A + T + C + G = 40 \triangleright 2 A + 2 C = 40 \triangleright A + C = 20 \triangleright A = 20 - C2 A + 3 C = 51 $2(20 - C) + 3C = 51 \triangleright 40 - 2C + 3C = 51 \triangleright C = 51 - 40 = 9 = G$ A = 20 - 9 = 11 = T $9 = G \cdot 9 = C \cdot 11 = T \cdot 11 = A$ ب- عدد الخلايا في كل مزرعة: المزرعة الأولى خلية واحدة – مادة الكوليشيسين لا تسمح بانقسام هيولي للخلية الأم-المزرعة الثانيةخلية واحدة – العصبية لا تنقسم – المزرعة الثالثة خلايا – انقسامين متتاليين لخليتين كل واحدة تعطى 4 خلايا – ج- نسبة جزيئة الـ ADN المتركبة من سلسلتين مشعتين خلال 63سا المزرعة 3 50.% حيث كل خلية بها سلسلتيADN غير مشعتين تدخل في التضاعف الأول للمرحلة البينية و تتخذ كل سلسلة كقالب لبناء سلسلة مشعة في جزيئة ADN الهجينة في كل خلية بنت ناتجة ثم هذه الجزيئة الأخيرة تدخل في التضاعف الثاني للمرحلة البينية الموالية و تتخذ كل سلسلة كقالب لبناء سلسلة مشعة في جزيئة ADN الناتجة التي تكون بعضها هجينة بنسبة 50.% و البقية نفس النسبة مشعة . 1 المخطط لكل خلية الجيل الثاني في المزرعة الثالثة: أبوي $AD\mathcal{N}$ او ADN 49 % هجين سجين %١..ADN ۱۰۰ إلى غير مشع 2و 2 50 ADN % مشع سلسلة مشعة وسلسلة غير مشعة VI الحساب النظري لدينا عدد أزواج القواعد الأزوتية: 68 ÷ 3.4 = 20 زوج من القواعد أي 40 قاعدة آزوتية حيث 3.4 طول النكلوتيدة الواحدة A + T + C + G = 40 \triangleright 2 A + 2 C = 40 \triangleright A + C = 20 \triangleright A = 20 - C2 A + 3 C = 51 $2(20 - C) + 3C = 51 \triangleright 40 - 2C + 3C = 51 \triangleright C = 51 - 40 = 11 = G$ A = 20 - 11 = 9 = T $11 = G \cdot 11 = C \cdot 9 = T \cdot 9 = A$

2as.ency-education.com