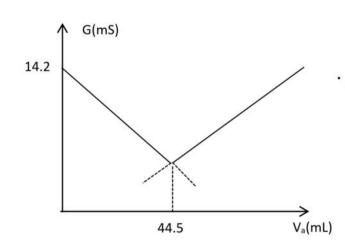
الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الخرائرية الجزائرية المسان المسان المتبار الثلاثيني الثاني في مادة العلوم الفيزيائية


سحاحة مدرجة

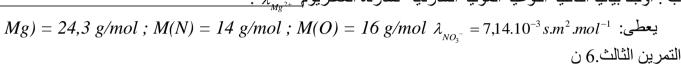
مولد **G.B.**F

محلول| HC

المدة: ساعدان السية الناسية علوم بجريبية المدة: ساعدان المدة: ساعدان

- I. يُحضر Ma+; OH-) من محلول لهيدروكسيد الصوديوم (Na+; OH-) من محلوله التجاري و ذلك . يُخذ 2 mL منه بالماصة . اذكر الخطوات للقيام بذلك . كيف تدعى العملية .
- II. أُخذ من المحلول المحضّر سابقا حجم V_b = 100 mL و أُفرغ في الأرلنمير قصد معايرته بمحلول مائي C_a = 0.1 mol/L) معلوم التركيز C_a = 0.1 mol/L) معلوم التركيز
 - لماذا نعاير محلول هيدروكسيد الصوديوم ؟
 - III. إليك الشكل المقابل الذي يمثل مخطط هذه المعايرة
 - أ سمّ العناصر المرقمة .
 - ب كيف تدعى هذه المعايرة .
 - البيان ($G(V_a)$) التالى:
 - 1. ماذا يمثل البيان .
 - 2. اشرح باختصار كيف نحصل على مثل هذا البيان .
 - 3. ماذا تمثل القيمتان 14.2 و 44.5.
 - 4. اشرح مختلف أطوار البيان .
 - 5. أنشأ جدول تقدم تفاعل المعايرة قبل، عند و بعد التكافؤ .
 - 6. بماذا يتميز هذا التفاعل.
 - 7. أوجد تركيز المحلول الأساسي المحضّر،
 - C_0 استنتج تركيز المحلول التجاري
 - 8. علما أنّ المحلول التجاري كتب على ملصقة قارورته المعلومات الآتية:

(محلولNaOH)


- 90.89 % ، 39,997 g/mol ، d = 2.13 قاكد من صحتها . هل المنتوج مغشوش ؟
- 9. أثبت أن كمية المادة في الحجم mL 500 mL من المحلول المحضر هي نفسها الموجودة في mL من الحجم المأخوذ .
 - الحجم التفاعلي عند نزول الحجم H_3O^+ و H_3O^+ و H_3O^+ في المزيج التفاعلي عند نزول الحجم $V_a = 50 \; \mathrm{mL}$

التمرين اللثاني: (6 ن)

نذيب كتلة m من نتراتُ المغنزيوم $Mg(NO_3)_2$ في 100mL من الماء المقطر فنحصل على محلول M(S) تركيزه M . C_0

 $\sigma = f(C)$ نقوم بمعايرة خلية قياس الناقلية بواسطة محاليل من نترات المغنزيوم مختلفة التركيز فنحصل على المنحنى المبيّن في الشكل المقابل و الذي يمثل تغيرات الناقلية النوعية σ بدلالة التركيز المولى .

- 1 أكتب معادلة انحلال نترات المغنزيوم في الماء .
- 2 أعط التركيب التجريبي الذي يسمح بقياس الناقلية .
- نقيس ناقلية المحلول (\hat{S}) بوأسطة خلية قياس الناقلية -3
 - . $G_0=25\ m\ S$ فنجد فنجد K=10cm التي ثابتها
 - أ أحسب الناقلية النوعية σ_0 للمحلول (S) .
 - C_0 ب استنتج بیانیا الترکیز المولی C_0 للمحلول (S).
- أحسب قيمة الكتلة m لنترات المغنزيوم الواجب استعمالها لتحضير المحلول (S).
 - C عبارة الناقلية النوعية σ بدلالة التركيز المولى
- ب : أوجد بيانيا الناقلية النوعية المولية الشاردية لشاردة المغنزيو لم

C (mmol/L)

- 1. اذكر مركبات الطاقة الداخلية.
- الى الحراري الواجب لتحويل كتلة m=20g من الجليد درجة حرارتها الابتدائية $\theta i=-25^{\circ}c$ الى الحراري الواجب لتحويل كتلة $\theta i=-25^{\circ}c$ في 45 دقيقة بحيث: $\theta i=-25^{\circ}c$ في 45 دقيقة بحيث:
 - $c_{\scriptscriptstyle g} = 2100 j \, / \, Kg.^{\circ} c$: السعة الحرارية الكتلية للجليد _
 - $c_{eau} = 4185 j / Kg.$ و السعة الحرارية الكتلية للماء
 - $c_v = 1960 j / Kg.$ °c : السعة الحرارية الكتلية للبخار
 - $L_f=3,35 imes10^5\,j\,/\,Kg$: السعة الكتلية لانصهار الجليد _
 - $L_{\rm v} = 2,26 \times 10^6 \, j \, / \, Kg.$: السعة الكتاية لتبخر الجليد _
 - 3. احسب عندئذ استطاعة التحويل

 $\sigma(S/m)$

0.3

0,2

0.1

 $\sigma = f(a)$