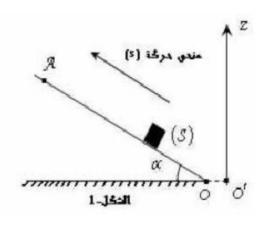
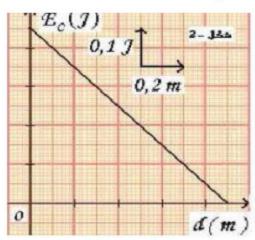
الجمهورية الجزائرية الديموقراطية الشعبية

السنة الدراسية: 2017-2018


اختبار الفصل الأول لأقسام السنة الثانية شعبة : رياضيات + تقنى رياضى


المدة : العلوم الفزيائية المعاوم الفزيائية على المدة : 02 ساعتان

الجزء الأول (14 نقطة)

التمرين الأول (4نقطة)

نرسل جسما صلبا أبعاده مهملة بسرعة ابتدائية V_0 انطلاقا من النقطة O فيتحرك بدون احتكاك على مستوي مائل بالزاوية $\alpha=30^\circ$ بالنسبة للخط الأفقي. تنعدم سرعته لحظة وصوله الى النقطة O من المستوي المائل أنظر الشكل-1- .

خلال حركة الجسم (S) تتغير طاقته الحركية E_c بدلالة المسافة المقطوعة d كما هو مبين في الشكل -2-

1- من البيان أستنتج ما يلي:

ب- المسافة المقطوعة لحظة انعدام سرعة

È

أ - الطاقة الحركية للجسم في الموضع O الجسم (الموضع A)

2- أحسب عمل ثقل الجسم عند قطعه المسافة d=0.6m

3- أوجد قيمة الكتلة m للجسم (s) ثم أستنتج سرعته الابتدائية .

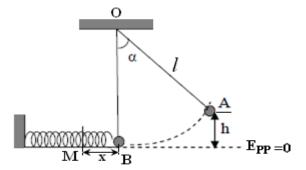
التمرين الثاني (4 نقطة)

تتدحرج كرة (تدور وتنسحب) على طريق مائل أملس بزاوية $\alpha=30^\circ$ بدون سرعة ابتدائية إذا علمت أن كتلة الكرة m=500 ونصف قطر ها m=10 وأن طول المستوي m=500 . m=10 m

1-مثل الحصيلة الطاقوية للجملة (كرة) ثم أكتب معادلة انحفاظ الطاقة.

2-أحسب عزم عطالة الكرة بالنسبة للمحور الدوران (المستوي المائل / ١)

3-. احسب سرعة الكرة Vعندما تصل إلى أسفل المستوي B.


يعطى: $J_{\Delta} = \frac{2MR^2}{5}$ (عزم عطالة الكرة بالنسبة لمحور مار من مركز ثقلها)

<u>صفحة 1من1</u>

2as.ency-education.com

التمرين الثالث(6نقطة)

الشكل المقابل يمثل نواس بسيط مؤلف من كرة كتلتها $m=0.1\,kg$ وخيط عديم الإمتطاط طوله l=1,6m یزاح عن وضع

 $lpha=60^{\circ}$ توازیه الشاقولی OB بزاویة إلى الموضع $\stackrel{.}{A}$ ، ثم نتركه حرا لحاله بدون سر عة إبتدائبة ،

دون أن يخضع لإحتكاك

- $\mathbf{E}_{PP=0}$. l و جد عبارة الإرتفاع h بدلالة α
 - 2) أحسب قيمة الطاقة الكامنة الثقالية للكرة عند الموضع A.
- A و A و نين الموضعين A و A مثّل الحصيلة الطاقوية للجملة (كرة + أرض) بين الموضعين A
- . B و A بين الموضعين A و A أكتب معادلة إنحفاظ الطاقة للجملة (كرة + أرض) بين الموضعين
 - B أحسب سرعة الكرة عند رجوعها إلى الموضع B
- عند رجوع الكرة إلى الموضع B تصدم طرف نابض مرن ثابت مرونته فتحدث فيه أقصى إنضغاط x ، وتتناقص سرعتها إلى أن تنعدم عند k=160~N~/mالموضع M ، بدون أن تخضع لإحتكاك .
 - . M و B بين الموضعين B و B . (1) مُثّل الحصيلة الطاقوية للجملة (كرة + نابض) بين الموضعين
 - . M و B بين الموضعين B و B أكتب معادلة إنحفاظ الطاقة للجملة (كرة + نابض) بين الموضعين
 - ر أحسب أقصى إنضغاط x للنابض (3)

g = 10N/kg تعطــــى قيمة الجاذبية الأرضية

الجزء الثاني (6نقاط):

التمرين الرابع (6نقطة)

غاز مجهول كتلته 44,16g نعتبره مثاليا موجود في قارورة معدنية حجمها V=8l مكنت دراسة ضغط الغاز بدلالة درجة حرارته المطلقة من الحصول على النتائج المبينة في الجدول التالي:

P(KPa)	50	100	150	200	250
$\theta({}^{\circ}\!C)$	-223	-173	-123	-73	-23
T(K)					

- 1- أكمل الجدول.
- P = f(T)ار سم البيان -2
- P = f(T) اكتب معادلة البيان (3
- 4 بتطبيق قانون الغاز المثالي، اكتب العبارة النظرية لضغط غاز P بدلالة درجة الحرارة المطلقة
 - 5- بالمقارنة بين العبارة النظرية والبيانية أوجد:
 - أ- كمية مادة الغاز وكتلته المولية
 - N_2,NO_2,CO_2,SO_2 : بين الغاز ات التالية

الغاز	N_2	NO_2	CO_2	SO_2
M(g / mol)	28	46	44	64

R = 8,31 SI

الصفحة 2من 2