مة	العلا	/ h Ehr		
مجموع	مجزأة	عناصر الإجابة: (الموضوع الأول)		
		التمرين الأول: (07 نقاط)		
		1) أ- ايجاد الصيغة المجملة للألسان(A):		
		$\mathrm{C_nH_{2n}}$ صيغته من الشكل $\mathrm{C_nH_{2n}}$		
		$\mathbf{M}_{\mathrm{A}} = 12\mathrm{n} + 2\mathrm{n}$		
3,50	0,25	$70 = 14n \Rightarrow n = 5$		
3,30	0, 5	C_5H_{10} :ومنه الصيغة المجملة لـ A هي		
	0, 5	وـ الصيغ نصف المفصلة الممكنة للألسان (A):		
		$H_3C-CH_2-CH=CH_2$ $H_3C-CH_2-CH=CH-CH_3$		
	0,25			
	× 5	$CH_3-C=CH-CH_3$ $CH_3-CH-CH=CH_2$		
	3	CH ₃		
		$CH_3-CH_2-C=CH_2$		
		CH ₃		
		ج) استنتاج صيغة المركب (C) :		
		O		
	0,25	O // (C): CH ₃ -C—H		
		صيغة الألسان (A):		
	0,5	$CH_3-C=CH-CH_3$		
		CH ₃		
		د - صيغة البوليمير (P):		
		CH ₃ CH ₃		
	0,5			
		$\begin{array}{c c} CH_3 & CH_3 \\ \hline -C & CH \\ \hline -CH_3 & -D \\ \end{array}$		
		- حساب درجة البلمرة للبوليمير (P):		
	0,25	$n = \frac{M_{P}}{M_{A}} = \frac{84000}{70} = 1200$		
	0,23	$M_A = 70$		

	T	
0,5	0,5	(I ₂) معادلة تفاعل ثلاثي الغليسريد (TG) مع اليود (3 CH ₂ -O-C-(CH ₂) ₆ -CH ₃ O TG + 6 I ₂
		4) حساب قرينة اليود (I _i) لثلاثي الغليسريد (TG):
		- حساب الكتلة المولية لثلاثي الغليسريد:
		$\mathrm{C_{47}H_{78}O_6}$: صيغته المجملة هي
1 25	0.5	$M_{TG} = (12 \times 47) + 78 + (6 \times 16)$
1,25	0,5	$M_{TG} = 738 \text{ g/mol}$
		تقبل الإجابة التالية:
		$M_{TG} = M_{AG1} + 2M_{AG2} + 92 - 54$
		$M_{TG} = 144 + 2 \times (278) + 92 - 54$
		$M_{TG} = 738 \text{ g/mol}$
		$1 \mod (TG) \longrightarrow 6 \mod (I_2)$
	0,25	$ \begin{array}{ccc} 738 \text{ g} & \longrightarrow & 6 \times 254 \\ 100 \text{ g} & \longrightarrow & I_{i} \end{array} \right\} \Rightarrow I_{i} = \frac{100 \times 6 \times 254}{738} $
		$100 \text{ g} \longrightarrow I_{i} \qquad \int 738$
	0,5	$\Rightarrow I_i = 206,50$
		-II
	2	1) الأحماض الأمينية الممثلة على صورة L:
0,5	2 × 0,25	Ser · Asp
	0,43	2) الصيغة نصف المفصلة لثنائي الببتيد Ile - Asp:

0,5	0,5	H ₂ N—CH- CH- C ₂ H	O -C-NH-CH-COO -CH ₃ CH ₂ COOH	Н
01	0,5	: pH=1 عند Ile - Asp عند الأبونية لثنائي الببتيد O H ₃ N-CH-C—NH-CH-COOH CH-CH ₃ CH ₂ C ₂ H ₅ COOH : pH=12 عند Ile - Asp عند pH=12 عند PH=12 الصيغة الأبونية لثنائي الببتيد O H ₂ N-CH-C—NH-CH-COO CH-CH ₃ CH ₂ C ₂ H ₅ COO		
		كاشف كزانثوبروتييك	عدد الروابط الببتيدية	4- إكمال الجدول: الببتيد
1,5	6 ×	_	1	Ser - Asp
	0,25		2	Phe - Ile - Ser
			اسم الببتيد	الببتيد
			سيريل حمض ا	Ser-Asp Phe - Ile - Ser
0,25	0,25	H ₂ N-CH-COOH + CH ₃ -CH ₂ OI CH-CH ₃ C ₂ H ₅	:ر H ₂ SO ₄ //	5 - إكمال التفاعل التالي O - الكات - O - CH ₂ - CH ₃ + H ₂ O

2,5	7 × 0,25	(التمرين الثالث: (66) نقاط) C_{0} : التمرين الثالث: (10 كالله الله الله الله الله الله الله الل
		$\Delta ext{H}_{ m f}^{ m o}(ext{C}_{ m 3} ext{H}_{ m 6} ext{O}_{ m (1)})$ ب- حساب قيمة أنطالبي تشكل البروبانال السائل
	0,25	$\Delta H_f^o = 3\Delta H_{sub}^o(C_{(s)}) + 3\Delta H_d^o(H-H) + \frac{1}{2}\Delta H_d^o(O=O) + 2\Delta H_f^o(C-C)$
		$+6\Delta H_f^{\circ}(C-H) + \Delta H_f^{\circ}(C=O) - \Delta H_{vap}^{\circ}$
	0,25	$\Delta H_{\rm f}^{\rm o} = 3 \times (717) + 3 \times (437) + \frac{1}{2} \times (498) + 2 \times (-347) + 6 \times (-410) + (-749) - 29,7$
	0,25	$\Delta H_f^o(C_3H_6O)_{d} = -221,7 \text{ kJ.mol}^{-1}$
	,	$\Delta H_{\rm f}^{\rm o}({ m A-B}) = -\Delta H_{ m d}^{\rm o}({ m A-B})$ ملاحظة: $\Delta H_{ m f}^{\rm o}({ m A-B}) = -\Delta H_{ m d}^{\rm o}({ m A-B})$
		$\Delta \Pi_{\rm f}(\Pi D)$ $\Delta \Pi_{\rm d}(\Pi D)$ أ- معادلة تفاعل الاحتراق
	0,5	$C_3H_6O_{()} + 4O_{2(g)} \longrightarrow 3CO_{2(g)} + 3H_2O_{()}$
		$ ext{C}_3 ext{H}_6 ext{O}_{(\lambda)}$ بتطبیق قانون هیس:
1,75		$\Delta H_{r}^{o} = \sum \Delta H_{f}^{o}(\text{produits}) - \sum \Delta H_{f}^{o}(\text{reactifs})$
	0,25	$\Delta H_{r}^{o} = \left[3 \times \Delta H_{f}^{o}(CO_{2(g)}) + 3 \times \Delta H_{f}^{o}(H_{2}O_{(I)}) \right] - \left[\Delta H_{f}^{o}(C_{3}H_{6}O_{(I)}) + 4 \times \Delta H_{f}^{o}(O_{2(g)}) \right]$
		$\Delta H_r^{\circ} = [3 \times (-393.5) + 3 \times (-286)] - (-221.7) = -1816.8 \text{ kJ.mol}^{-1}$
	0,25	$\Delta H_{\text{comb}}^{\text{o}} = -1816.8 \text{ kJ.mol}^{-1}$

		ΔU لتفاعل الاحتراق عند $^{\circ}C$:
	0,25	$\Delta H = \Delta U + \Delta n_g \times R \times T \implies \Delta U = \Delta H - \Delta n_g \times R \times T$
	0,25	$\Delta n_g = 3 - 4 = -1 \text{ mol}$
		$\Delta U = -1816.8 - \left[(-1) \times 8.314 \times 10^{-3} \times 298 \right]$
	0,25	$\Delta U = -1814,3 \text{ kJ}$
		3) أ- أحسب كمية الحرارة Q الناتجة عن الاحتراق
		$\sum Q_i = 0$
	0,25	$\overline{Q}_{(eau)} + Q_{(cal)} + Q_{reaction} = 0 \implies Q_{reaction} = -Q_{(eau)} - Q_{(cal)}$
		$Q_{\rm reaction} = - (C_{\rm cal} + m_{\rm eau} \times c_{\rm eau}) \times \Delta T$
		C _{cal} : مهما
1,75	0,25	$Q_{\text{reaction}} = -m_{\text{eau}} \times c_{\text{eau}} \times \Delta T$
1,75	0,25	$Q_{\text{reaction}} = -600 \times 4,185 \times 18,1$ $Q_{\text{reaction}} = -45449,1 \text{ J} = -45,449 \text{ kJ}$
		$\Delta ext{H}_{ ext{comb}}^{ ext{o}}$ ب $-$ استنتاج أنطالبي الاحتراق
	0,25	$\Delta H_{comb}^{o} = \frac{Q_{reaction}}{n}$
	0,25	$M(C_3H_6O) = 12 \times 3 + 616 = 58 \text{ g/mol}$
	0,25	$n = \frac{m}{M} = \frac{1,45}{58} = 0,025 \text{ mol}$
	0,25	$\Delta H_{\text{comb}}^{\text{o}} = \frac{-45,449}{0,025} = -1817,96 \text{ kJ.mol}^{-1}$

العلامة			
مجموع	مجزأة	عناصر الإجابة: (الموضوع الثاني)	
		التمرين الأول (07 نقاط):	
		: D، E ، C ، B ، A ويجاد صيغة كل من (1)	
3,25	0,25	·	
	0,25		
		- الصيغة نصف المفصلة للمركب العضوي D هي:	
	0,25		
	0,23	H_3C — \ddot{C} — CH_3 - الصيغة نصف المفصلة للمركب العضوي A هي:	
		· ·	
	0,75	H ₃ C CH ₃	
		H ₃ C CH ₃	
		- صيغ المركبات العضوية B و C و E :	
	0,25	يتفاعل المركب العضوي E مع DNPH ويرجع محلول فهلينغ فهو ألدهيد و له نفس الصيغة	
		العامة للمركب D .	
	0,75	CH ₃	
	X 2	$\mathbf{B}: H_3C-CH_2-CH=CH-CH_2-CH_3$ $\mathbf{C}: H_3C-C=CH-CH_2-CH_3$	
	2		
	0.25	$E: H_3C-CH_2-C$	
	0,25	H	
		2) أ- إيجاد صيغ المركبات F, G, H, I, J, K:	
		oн CI	
2 ==	0,50	$\mathbf{F}: \ H_3C - CH - CH_3 \qquad \mathbf{G}: \ H_3C - CH - CH_3$	
3,75	X		
	6	H ₃ C-CH-CH ₃ H ₃ C-CH-CH ₃ COOH COOH	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

العلامة		/ 15t = + ti\ -3.1 - 5t
مجموع	مجزأة	عناصر الإجابة: (الموضوع الثاني)
	0,75	ب – معادلة تفاعل بلمرة المركب (K): O NH + m H ₂ O التمرين الثاني (06 نقاط):
0,50	0,25 X 2	(TG) المولية لثلاثي الغليسريد (TG) عساب الكتلة المولية لثلاثي الغليسريد (TG) عساب (1 $M_{TG} \longrightarrow 3mol$ de KOH $M_{TG} \longrightarrow 3\times56$ $M_{TG} = \frac{168}{189,6\times10^{-3}} = 886g.mol^{-1}$ $M_{TG} \longrightarrow 189,6\times10^{-3}$ $M_{TG} = \frac{168}{189,6\times10^{-3}} = 886g.mol^{-1}$ $M_{TG} \longrightarrow 189,6\times10^{-3}$ $M_{TG} \longrightarrow 189,6\times10^{$
	0,25	$M_A = 886 + (3 \times 18) - 92 - (2 \times 282) = 284 \text{ g.mol}^{-1}$ A: H_3C - $(CH_2)_n$ - $COOH$
2,50	0,25 0,50 0,25 0,25	$M_A = 15 + 14n + 45 = 284g.mol^{-1}$ $14n = 284 - 60 = 224 \Rightarrow n = 16$ A: $H_3C - (CH_2)_{16} - COOH$: $C \ni B$ من المفصلة لكل من $B \ni C$ $H_3C - (CH_2)_x - CH = CH - (CH_2)_7 - COOH$ $O_{XX}^{\dagger} = O_{XX}^{\dagger}$ $O_{XX}^{\dagger} = O_{XX}^{$

رمة	العلا	/ 01201 - 0 01\ - 1 1 kbi	
مجموع	مجزأة	عناصر الإجابة: (الموضوع الثاني)	
	0,50	B: $H_3C-(CH_2)_7-CH=CH-(CH_2)_7-COOH$	
	0,50	$C: H_3C-(CH_2)_7-COOH$	
0,50	0,25 X 2	: (TG) استنتاج الصيغ نصف المفصلة الممكنة لثلاثي الغليسريد (3 CH ₂ -o-c (CH ₂) ₇ - CH = CH - (CH ₂) ₇ - CH ₃ (CH ₂) ₇ - CH = CH - (CH ₂) ₇ - CH ₃ (CH ₂) ₇ - CH = CH - (CH ₂) ₇ - CH ₃ (CH ₂) ₇ - CH = CH - (CH ₂) ₇ - CH ₃ (CH ₂) ₇ - CH = CH - (CH ₂) ₇ - CH ₃ (CH ₂) ₇ - CH = CH - (CH ₂) ₇ - CH ₃ (CH ₂) ₇ - CH = CH - (CH ₂) ₇ - CH ₃ (CH ₂) ₁₆ - CH ₃	
0,50	0,25 X 2	$ \begin{array}{c} TG \longrightarrow 2 I_2 \\ 886 \longrightarrow 2 \times 254 \\ 100 \text{ g} \longrightarrow I_i \end{array} $ $= I_i = \frac{50800}{886} = 57.3$	
		- II	
1,00	0,25 X 4	1) تصنيف الأحماض الأمينية المكونة لرباعي الببتيد (P): Phe : حمض أميني حلقي عطري . Cys : حمض أميني خطي كبريتي . Ala : حمض أميني خطي بسيط . Lys : حمض أميني خطي قاعدي . (2) أ-استناج الصيغ A و B و C:	
1,00	0,25 X 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

العلامة		/ *15*1 - * *1\ -11
مجموع	مجزأة	عناصر الإجابة: (الموضوع الثاني)
		pH_i ب - حساب قيمة الـ
	0,25	$pHi = \frac{pKa_1 + pKa_R}{2} = \frac{1,96 + 8,18}{2} = 5,07$
		التمرين الثالث (07 نقاط):
		السعة الحرارية للمسعر: $(1 - I)$
		$\sum Q = 0$
	0,25	$C_{cal} \cdot \Delta T_1 + m_1 c_{eau} \cdot \Delta T_1 + m_2 c_{eau} \cdot \Delta T_2 = 0$
	ŕ	$C_{cal}(T_f - T_1) + m_1 c_{eau}(T_f - T_1) + m_2 c_{eau}(T_f - T_2) = 0$
0,75	0,25	$C_{cal}(50-20) + (200 \times 4,185)(50-20) + (300 \times 4,185)(50-75) = 0$
	0,25	$C_{cal} = \frac{31387,5 - 25110}{30} = 209,25 \text{ J.K}^{-1}$
		$:V_2$ و V_1 حساب (2
	0,25	$ \begin{cases} V_1 + V_2 = 500 \text{ mL} \\ \rho_{H_2O} = 1g.mL^{-1} \end{cases} \Rightarrow \{m_1 + m_2 = 500g\} $
		$C_{cal}\Delta T_1 + m_1 c\Delta T_1 + m_2 c\Delta T_2 = 0$
		$C_{cal}(T_{eq}-T_1)+m_1c(T_{eq}-T_1)+m_2c(T_{eq}-T_2)=0$
	0,25	$C_{cal}(37-20) + (m_1 \times 4,185)(37-20) + (m_2 \times 4,185)(37-75) = 0$
1,50		$(209,25\times17)+m_1(4,185\times17)-m_2(4,185\times38)=0$
1,50		$(3557,25) + 71,145m_1 - 159,03m_2 = 0$
	0,25	$159,03(500-m_1)-71,145m_1=3557,25$
	0,23	$79515 - 159,03m_1 - 71,145m_1 = 3557,25$
		$230,175m_1 = 75957,75 \Longrightarrow m_1 = 330g$
		$m_2 = 500 - m_1 = 500 - 330 = 170g$
	0,25	$ \left\{ \begin{array}{l} m_1 = 330g \\ m_2 = 170g \end{array} \right. $
		$\left[\rho_{H_2O} = 1g .mL^{-1}\right]$
	0,25 0,25	$\Rightarrow \begin{cases} V_1 = 330 \text{ mL} \\ V_2 = 170 \text{ mL} \end{cases}$

العلامة		را الألا من شدرال وقال المرات
مجموع	مجزأة	عناصر الإجابة: (الموضوع الثاني)
		ا - $\Delta H_{f(NO_{(g)})}^{\circ}$ - II ایجاد أنطالبي تشکل أکسید الأزوت $\Delta H_{f(NO_{(g)})}^{\circ}$ من خلال طاقات الروابط : 1
	0,25 × 4	$ \frac{1}{2}N_{2(g)} + \frac{1}{2}O_{2(g)} \xrightarrow{\Delta H_{f} =?} NO_{(g)} $ $ \begin{vmatrix} \frac{1}{2}\Delta H_{d}(N = N) & \frac{1}{2}\Delta H_{d}(O=O) & -\Delta H_{d}(N = O) \end{vmatrix} $ $ N_{(g)} + O_{(g)} $
1,75	0,25	$\Delta \mathbf{H}^{o}_{f(\text{NO})_{(g)}} = \frac{1}{2} \Delta \mathbf{H}^{o}_{d(\text{N} \equiv \text{N})} + \frac{1}{2} \Delta \mathbf{H}^{o}_{d(\text{O} = \text{O})} - \Delta \mathbf{H}^{o}_{d(\text{N} = \text{O})}$
	0,25	$\Delta H_{f(NO)_{(g)}}^{o} = (\frac{1}{2} \times 945) + (\frac{1}{2} \times 498) - (631)$
	0,25	$\Delta H_{f(NO)_{(g)}}^{o} = 472,5 + 249 - 631 = 90,5 \text{ kJ.mol}^{-1}$
		: $\Delta H^{\circ}_{_{\mathrm{f}(\mathrm{H}_{2}\mathrm{O})_{\mathrm{I}}}}$ استنتاج أنطالبي تشكل الماء السائل الماء السائل (2
	0,25	$\Delta H_{\rm r}^{\rm o} = \sum \Delta H_{\rm f(Produits)}^{\rm o} - \sum \Delta H_{\rm f(Réactifs)}^{\rm o}$
1,00		$\Delta H_{\rm f}^{\rm o} = 2\Delta H_{\rm f(NO)_{(g)}}^{\rm o} + 3\Delta H_{\rm f(H_2O)_{(1)}}^{\rm o} - 2\Delta H_{\rm f(NH_3)_{(g)}}^{\rm o} - \frac{5}{2}\Delta H_{\rm f(O_2)_{(g)}}^{\rm o}$
	0,25	$3\Delta H_{f(H_2O(1))}^{\circ} = -584 - 2(90,5) + 2(-46) + \frac{5}{2}(0)$
	0,50	$\Delta H_{f(H_2O(1))}^o = \frac{-857}{3} = -285,66 \text{ kJ.mol}^{-1}$
		$^{\circ}$ C عند $^{\circ}$ H عند التفاعل السابق $^{\circ}$ H عند $^{\circ}$
		$\Delta H_{T} = \Delta H_{T_0} + \int_{T_0}^{T} \Delta C_p dT$
	0,25	$\Delta H_{363} = \Delta H_{298}^{\circ} + \int_{298}^{363} \Delta C_{p} dT$
1,50	0,25	$\Delta H_{363} = \Delta H_{298}^{o} + \Delta C_{p}(363 - 298)$
	0,25	$\Delta C_{p} = 2C_{p(NO)(g)} + 3C_{p(H_{2}O)(1)} - \frac{5}{2}C_{p(O_{2})(g)} - 2C_{p(NH_{3})(g)}$
	0,25	$\Delta C_{p} = (2 \times 29,84) + (3 \times 75,24) - (\frac{5}{2} \times 29,37) - (2 \times 35,06) = 141,855 \text{ J.mol}^{-1}.\text{K}^{-1}$

الإجابة النموذجية لموضوع اختبار مادة: تكنولوجيا ه. الطرائق/ الشعبة: تقني رياضي/ بكالوريا: 2018

العلامة		/ *15*1 - * *1\ -7 1 - \\ 1 *-	
مجموع	مجزأة	عناصر الإجابة: (الموضوع الثاني)	
	0,5	$\Delta H_{363} = -584 + \left(141,85 \times 10^{-3}\right)(363 - 298)$ $\Delta H_{363} = -584 + 9,22$ $\Delta H_{363} = -574,78 \text{ kJ.mol}^{-1}$	
0,50	0,25 × 2		