الأسئلة الشائعة في دراسة الدوال وكيفية الإجابة عليها

1) السلوك التقاربي / الوضع النسبي لمنحني

الإجابة	السؤال
$x=a$ يقبل مستقيما مقاربا يوازي حامل محور الفواصل معادلته $\left(C_{f} ight)$	$\lim_{x \to a} f(x) = \pm \infty : \mathbf{b}$
$y=b$ يقبل مستقيما مقاربا يوازي حامل محور التراتيب معادلته (C_f)	$\lim_{x \to \pm \infty} f(x) = b : b$
$y=ax+b$ معادلته $\pm\infty$ معادلته امقاربا مائلا بجوار (C_f)	$\lim_{x \to \pm \infty} \left[f(x) - (ax + b) \right] = 0$ فسربیانیا: 0
$\lim_{x \to \pm \infty} \left[f(x) - (ax + b) \right] = 0$ نبيئن أن:	بین أن المستقیم $(\Delta): y = ax + b$ مقارب مائل لـ
	$.\left(C_{f} ight)$
: يكفي أن نبين ، $f(x) = ax + b + g(x)$ ، يكفي أن نبين	بين أن (C_f) يقبل مستقيما مقاربا مائلا يطلب تعيين
$y = ax + b$: ومعادلته هي . $\lim_{x \to \pm \infty} g(x) = 0$	معادلته
و إذا لم يكن ذلك نعين العددين a و b من a كما يلي :	
$b = \lim_{x \to \pm \infty} (f(x) - ax) a = \lim_{x \to \pm \infty} \left(\frac{f(x)}{x}\right)$	خاص بشعبتي الرياضي و التقني رياضي
$D\left(x\right)=f\left(x\right)-y$: ندرس إشارة الفرق	أدرس الوضع النسبي لـ $\left(C_{f} ight)$ و المستقيم $\left(\Delta ight)$ ذي
$D\left(x ight)>0$ معناه أن $C_{f}\left(x ight)$ يقع فوق $D\left(x ight)$.	y = ax + b : المعادلة
$D(x)$ معناه أن C_f يقع تحت $D(x)$. •	<u>نطبق نفس الإجابة على السؤال</u> : أدرس وضعية
D(x)=0 معناه أن: $D(x)=0$	$(C_{_g})$ و $(C_{_g})$ بوضع:
	D(x) = f(x) - g(x)
. $\pm\infty$ متقاربان بجوار $\left(C_{g} ight)$ و $\left(C_{g} ight)$	$\lim_{x \to \pm \infty} f(x) - g(x) = 0$ فسر بیانیا : فسر بیانیا

2) عناصرتناظرمنحني / شفعية دالـــة

الإجابة	السؤال
$f(2\alpha-x)+f(x)=2\beta$ يكفي أن نبين	$(C_f$) بين أن النقطة $\Omega(lpha;eta)$ مركز تناظر للمنحني
$\Omega(lpha;eta)$ بعد الحساب نستنتج أن (C_f) متناظر بالنسبة	. بین أن $f(\alpha+x)+f(\alpha-x)=2$ ، ماذا تستنتج
$f(2\alpha-x)=f(x)$ يكفي أن نبين:	$\left(C_{f} ight)$ بين أن المستقيم $\left(d ight)$: $x=lpha$ محور تناظر للمنحني
$\left(C_{f}\; ight)$ نستنتج أن: المستقيم ذو المعادلة $x=lpha$ محور تناظر ا	. بین أن $f\left(lpha+x ight)=f\left(lpha-x ight)$ ، ماذا تستنتج
$f\left(-x\right) = -f\left(x\right)$ نبرهن أن	بين أن f دالمة فردية
$f\left(-x\right)=f\left(x\right)$ نبرهن أن	بين أن f دالة زوجية
$\left(C_{f}\right)$ نستنتج أن f دالة فردية، و مبدأ المعلم مركز تناظر الماء أ	. ماذا تستنتج ؟ $f\left(-x\right)+f\left(x\right)=0$ ، بين أن
نستنتج أن f دالتزوجية ، و $\left(C_{f} ight)$ متناظر بالنسبة لمحور التراتيب	$f\left(-x\right)-f\left(x\right)=0$ ، ماذا تستنتج
$\Omega\!\left(rac{lpha}{2};rac{eta}{2} ight)$ نستنتج أن $\left(C_{f} ight)$ متناظر بالنسبة للنقطة	بین أن: $f\left(\alpha-x\right)+f\left(x\right)=\beta$ ، ماذا تستنتج ؟ .
$x=rac{lpha}{2}$ نستنتج أن: (C_f) متناظر بالنسبة للمستقيم ذو المعادلة	. ماذا تستنتج $f\left(\alpha-x\right)-f\left(x\right)=\beta$ ، ماذا تستنتج

حلول المعادلة هي فواصل نقط تقاطع المنحني (C_f) مع محور الفواصل $lacktriangle$. ممثلا في معلم (C_f) ممثلا في معلم
بالنسبة للإشارة : المجالات التي يكون فيها (C_f) تحت محور الفواصل فإن $lacksquare$	f(x) = 0 حل بيانيا المعادلة
و المجالات التي يكون فيها $\left(C_{f} ight)$ فوق محور الفواصل فإن ، $\left(f\left(x ight)\!\prec\!0 ight)$	$f\left(x\right)$ إستنتج إشارة
$.\left(f\left(x\right) \succ 0\right)$	
نجد $f\left(lpha ight)$ ثم نحدد المجالات: $f\left(lpha ight)$ إما موجبة أو سالبة	$f\left(x ight)$ أحسب $f\left(lpha ight)$ ، ثم استنتج إشارة
. $[a;b]$ مستمرة و رتيبة على المجال أولا: نبين أن f مستمرة و رتيبة على المجال	α بين أن المعادلة $f(x) = k$ تقبل حلا وحيدا
و $f\left(a ight)$ ثمنيا: نحسب كلا من $f\left(a ight)$ و و $f\left(b ight)$ ثم نبين أن k محصور بين $f\left(a ight)$ و	$a \le \alpha \le b$:حيث
$f\left(x ight)\!=\!k$: يحقق $\left[a;b ight]$ من المجال $lpha$ من المجال $\left(b ight)$	
. $[a;b]$ مستمرة ورتيبة على المجال أ f	$lpha$ بين أن المعادلة $f\left(x\right)=0$ تقبل حل وحيد
نحسب (a) ومنه يوجد (a) ، ثم نجد : (a) نجه (a) . ومنه يوجد (a)	. α ∈[a;b] : حيث
$.f\left(x\right)=0$: من المجال $\left[a;b\right]$ يحقق	او بصيغة أخرى: بين أن $\left(C_{_f} ight)$ يـقطع محور
	الفواصل في نقطة وحيدة فاصلتها $lpha$.

4) العدد المشتق وتفسيره الهندسي

	T
الإجابة	السؤال
f'(a) = L و الدالة f تقبل الإشتقاق عند a ، و	$\lim_{n \to \infty} \left(f(a+h) - f(a) \right) = I$
مماسا معامل $A\left(a;f\left(a ight) ight)$ مماسا معامل $\left(C_{f} ight)$	$\lim_{h \to 0} \left(\frac{f(a+h)-f(a)}{h} \right) = L$: فسرمایلي
. $L: f'(a)$ ئي $f'(a)$	$\lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \right) = L$ أو:
f'(a)=0 الدالة f تقبل الإشتقاق عند a ، و $f'(a)=0$	$\lim_{a \to a} \left(f(a+h) - f(a) \right) = 0$
يقبل عند النقطة $A\left(a;f\left(a ight) ight)$ مماسا موازيا $\left(C_{f} ight)$	$\lim_{h \to 0} \left(\frac{f\left(a+h\right) - f\left(a\right)}{h} \right) = 0$: فسرمایلي
لحامل محور الفواصل.	
. a الدالة f لاتقبل الإشتقاق عند	$\lim_{a \to \infty} \left(\frac{f(a+h)-f(a)}{f(a+h)-f(a)} \right) = +\infty$
مماسا رأو نصف $A\left(a;f\left(a ight) ight)$ مماسا رأو نصف $\left(C_{f} ight)$	$\lim_{h \to \infty} \left(\frac{f(a+h) - f(a)}{h} \right) = \pm \infty : فسرمايلي$
. $x=a$ مماس $)$ موازي لحامل محور التراتيب معادلته	
. a الدالة f لاتقبل الإشتقاق عند	$\lim_{a \to a} \left(\frac{f(a+h)-f(a)}{a} \right) = I + I + I + I + I + I + I + I + I + I$
نصفي مماسين $A\left(a;f\left(a ight) ight)$ نصفي مماسين $\left(C_{f} ight)$	$\lim_{h \xrightarrow{\times} 0} \left(\frac{f(a+h)-f(a)}{h} \right) = L_1:$ فسرمایلي
معامل توجيههما L_1 و L_2 على الترتيب ، و تسمى النقطة A نقطة زاوية .	$(L_1 \neq L_2)$ میث ر $\lim_{h \xrightarrow{\sim} 0} \left(\frac{f(a+h)-f(a)}{h} \right) = L_2$: 9

5) الماسات

الإجابة	السؤال
نکتب المعادلة: $(x_0)(x-x_0)+f(x_0)$ ، ثم نحسب	x_{0} عين معادلة الماس لـ $\left(C_{f} ight)$ عند النقطة ذات الفاصلة
ڪلا من $f'(x_0)$ و نعوض في المعادلة.	
أي نبحث عن الفاصلة x_0 و ذلك بحل المعادلة $y_0 = y_0$ ، ثم	y_{0} عند النقطة ذات الترتيبة $\left(C_{f} ight.$ عند النقطة ذات الترتيبة
$\cdot x_0$ نڪتب معادلة الماس عند	
نحسب معامل التويجه : $\frac{y_A-y_B}{x_A-x_B}$: حيث النقطتين	$\cdot f'(x_0)$: عين بيانيا العدد المشتق
$x_A - x_B$. $f'(x_0)$ = معامل توجيه المماس
A و B من المماس .	
نبحث عن الفاصلة x_0 بحل المعادلة $f'(x) = a$ أي عدد حلول	. $lpha$ هل توجد مماسات لـ $(C_f$) معامل توجيهها
a المعادلة هي عدد المماسات التي معامل توجيهها	
f'(x)=a نحل المعادلة: معامل توجيه $f'(x)=(d)$ أي	هل توجد مماسات لـ $(C_f^{})$ توازي المستقيم ذا المعادلة
$(d\)$ اذا وجدنا حلول نقول يوجد مماسات لـ $(C_f\)$ موازية	$\cdot (d) : y = ax + b$
$\beta = f'(x_0)(\alpha - x_0) + f(x_0)$ نبحث عن x_0 بحل المعادلة	. $A\left(lpha,eta ight)$ نشمل النقطة (C_{f}) هل توجد مماسات لـ
عدد حلول المعادلة تمثل عدد الماسات.	
نبحث عن x_0 بحل المعادلة: $\frac{1}{a}$: نبحث عن x_0 هو معامل	هل توجد مماسات لـ (C_f) تعامد المستقيم ذا المعادلة
a توجيه (d) . وعدد الحلول يمثل عدد الماسات .	. (في معلم متعامد و متجانس). (d) : $y = ax + b$

ا أحيانا تعطى لنا عبارة الدالة $f\left(x\right)$ بثوابت مجهولة $\left(x,b,a\right)$ ويطلب منا تعيينها

علما أن عدد المعطيات المباشرة وغير المباشرة تكون بعدد الثوابت

(,c,b,a) ترجمتها إلى معادلات لتعيين الثوابت	المعطيات
. نحل الجملة: $\begin{cases} f\left(x_{0}\right)=y_{0}\\ f'\left(x_{0}\right)=0 \end{cases}$ ثم نعين الثوابت المجهولة:	يقبل في النقطة $A\left(\mathbf{x}_0,\mathbf{y}_0 ight)$ يقبل موازيا لمحور النقطة $A\left(\mathbf{x}_0,\mathbf{y}_0 ight)$. ($A\left(\mathbf{x}_0,\mathbf{y}_0 ight)$.
$\begin{cases} f(x_0) = mx_0 + k \\ f'(x_0) = m \end{cases}$: in the integral in the second contains the sec	يقبل في النقطة ذات الفاصلة x_0 مماسا يوازي المستقيم $y = mx + k \text{ذا المعادلة} y$
$\begin{cases} f(x_A) = y_A \\ f'(x_0) = \frac{y_A - y_B}{x_A - x_B} \end{cases}$ نحل الجملة:	مماسا يشمل النقطة $A\left(x_{A};y_{A} ight)$ مماسا يشمل النقطة $B\left(x_{B};y_{B} ight)$. $B\left(x_{B};y_{B} ight)$

$\left(C_{f}^{} ight)$ رسم منحني $\left(C_{g}^{} ight)$ إنطالاقا من المنحني (7

فــــان:	إذا كــان:
(xx') يناظر (C_f) بالنسبة إلى محور الفواصل (C_g)	g(x) = -f(x)
دالة زوجية ، و $x \geq 0$ يكون C_g منطبقا على g	g(x) = f(x)
$.\left(C_{f} ight)$	
ينطبق على $\left(C_{_{f}} ight)$ في المجالات التي تكون $\left(C_{_{g}} ight)$	g(x) = f(x)
f فیها f موجبت	
يناظر $\left(C_{f} ight)$ بالنسبة إلى $\left(C_{g} ight)$ في $\left(C_{g} ight)$	
المجالات التي تكون فيها f سالبت.	

بالتوفيق لجميع طلبتنا الأعزاء في بكالوريا 2018

الأستاذ: بلقاسم عبدالرزاق