	العلامة	عناصر الإجابة (الموضوع الأول)							
مجموع	مجزأة								
01	0.25 0.25 2×0.25	(104) (طان (104) (طان (104) $($							
		ع ح	التقدم		دة بالـ : mol	ميات الما	ک		
	0.5	ן כ	0	0.03	1,08.10-2	0	0		
		ح و	X	0.03 -2 x	1,08.10 ⁻² - 6x	2x	3x	بزيادة	
01		ن	$\mathbf{x}_{\mathbf{f}}$	$0.03 - 2 x_{\rm f}$	$1,08.10^{-2}$ - $6x_f$	$2x_{\rm f}$	$3x_f$		
	0.25 0.25	$x_{max}=1,8.10^{-3} mol$ اعل المحد: $^{+}$							
1.25	0.25			$x = \frac{V_{H_2}}{3V_M} \qquad -1-3$ $V_{f(H_2)} = 0.13 L \qquad -\psi$					
1.23	0.25			$x(t_{\frac{1}{2}}) = \frac{x_{max}}{2} - \frac{1}{2}$ $V_{H_2}\left(t_{\frac{1}{2}}\right) = x\left(t_{\frac{1}{2}}\right) \cdot 3V_M = \frac{3V_M x_{max}}{2} = \frac{V_{f(H_2)}}{2}$					
	0.25			\ 2 <i>/</i>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			$\frac{1}{2}$ قیمة $\frac{t_1}{2}$	
0.75	0.25	$v = \frac{dx}{dt}$ $v = \frac{d}{dt} \left(\frac{V_{H_2}}{3V_M} \right)$						-1-4	
0.73	0.25 0.25	$v = \frac{1}{3V_M} \frac{dV_{H_2}}{dt}$ $v = 2.0 \cdot 10^{-6} \text{ mol/s}$					ب- s		

لَّهُ في الوضع (1) جهة التوترات والتيار في الدارة	التمرين الثاني I- الباد
حه قبلته ترات مالتدار في الدارة	-
جهه التوترات والتيارات	-1
0.25 0.25	
0.25 معادلة التفاضلية التي يحققها التوتر بين طرفي المكثفة: $dU_{ m RD}$. $U_{ m RD}$. E	-2
$0.5 \begin{vmatrix} u_{\text{BD}} \\ v_{\text{C}} \end{vmatrix} = \frac{v_{\text{BD}}}{v_{\text{C}}} = \frac{v_{\text{C}}}{v_{\text{C}}} = \frac{v_{\text{C}}}$	-3
0.75 0.25 0.25 0.25 0.25	-4
$ au$ الزمن اللازم لبلوغ التوتر بين طرفي المكثفة $ ag{63}$ من قيمته $ au$	
العظمى أثناء الشحن.	
قيمته: $ au = 10^{-3} \mathrm{s}$ قيمته: $ au = 10^{-3} \mathrm{s}$ ربط راسم الاهتزاز المهبطي بالدارة (انظر الشكل أعلاه).	
0.5	
$U(v)^{\wedge}$	
0.25	
0.25	
تستهلك الطاقة على شكل حرارة في الناقل الأومى بفعل جول.	-1 -II
0.75 0.25	قيمتها
$E_{(c)} = \frac{1}{2} C E^2$	
$E_{(c)} = 1,25.10^{-6} J$	

		$E'_{(c)} = \frac{1}{2} C_{eq} E^2$ -2
		ζ .
	2×0.25	$C_{eq} = \frac{2E'(c)}{E^2} = 0.3 \times 10^{-6}F = 300nF$
0.1	0.25	نستنتج أن الربط تم على التفرع. $C_{eq} > C$
01		$c_{eq}=c+c$: إذن
	0.25	$C' = C_{eq} - C = 200 nF$
		التمرين الثالث: (04) نقاط)
	0.5	1- أ- عشوائي ، تلقائي و حتمي
		40 K → 40 Ca + 0 e -ب
	0. 25	
01	0.25	eta^- : نمط الإشعاع
		2- أ- المنحنى (1) يمثل تغير عدد أنوية الكالسيوم بدلالة الزمن
	0.25	$N_0(^{40}_{20}{ m Ca})=0$ التعليل: لأن نواة $^{40}_{20}{ m Ca}$ نواة ابن و بالتالي البيان ينطلق من الصفر أي أن
	0.25 0.25	$t=t_{1/2}$ ب
		$N_0(^{40}_{19}K) = N_t(^{40}_{19}K) + N_t(^{40}_{20}Ca)$ التعليل:
	0. 5	
0.0		$N_0(^{40}_{19}K) = 2 N_t(^{40}_{19}K)$
02		$N_{t}({}^{40}_{19}K) = \frac{N_{0}({}^{40}_{19}K)}{2}$
		$t=t_{1/2}$ اکِا
	0.25	$t_{1/2} = 1.3 \cdot 10^9 \text{ ans}$
		تقبل الأجوبة الصحيحة الأخرى.
		$A_0 = \lambda N_0(^{40}_{19}K)$
	0.25	$A_0 = \frac{\ln 2}{t_{1/2}} N_0(^{40}_{19} \text{K})$
	0.25	$A_0 = 1,69.10^6 \text{ Bq}$
	0.25	t ₁ = 3.10 ⁹ ans : أ- بيانيا:
	0.25	$N(_{19}^{40}K) = \frac{1}{4} N(_{20}^{40}Ca)$ ب- حسابیا:
	0.25	$N_0(^{40}K) e^{-\lambda t_1} = \frac{1}{4} N_0(^{40}K) (1 - e^{-\lambda t_1})$
01	0.25	$t_1 = \frac{ln5}{ln2} t_{1/2}$
	0.25	$t_1 = 3.10^9$ ans

	0.25	$CH_3COOH(1) + C_3H_7OH(1) = CH_3COO-C_3H_7(1) + H_2O(1)$ - ¹ -3						
0.5	0.25	$n_f(a) = C_b V'_{be}$ = 1x0,08 = 0,08 mol						
	0.25	$n_0(a) = C_b V'_{be}(t=0)$ -1 -2 = 1x 0.2 = 0.2 mol -2 -1 -2 -2 -4 -2 -4 -2 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4						
0.25	0.25	الهدف تسريع التفاعل بالتسخين دون فقدان كمية المادة .						
0.75	0. 5 0.25	$V_M = 10.9 \ m/s$ (04): التمرين التجريبي (04 نقاط)						
	0.25	$V_M = \sqrt{V_0^2 - 2gh}$						
0.75	0.25	$Z(t)$ نعوض قيمة t_M في المعادلة $h=1.27~{ m m}$						
	0.25	$t_{M} = \frac{d}{v_{0}\cos\alpha + V}$ $t_{M} = 1.27 \text{ s}$						
0.5	0.5	-4						
		M لحركة النقطة $x_{ m M}(t)$ المعادلة الزمنية $x_{ m M}(t)=-Vt+d$						
0.5	0.5	$z = -\frac{g}{2 V_0^2 \cos^2 \alpha} x^2 + (\tan \alpha) x$						
	0.25	$z=-rac{1}{2}gt^{2}+ u_{0}(\sin lpha)t$ عادلة المسار:						
1.5	0.25 0.25	$x = V_0 (\cos \alpha) t$ $z = -\frac{1}{2}gt^2 + V_0(\sin \alpha)t$						
	0.25 0.25	$V_{x} = V_{0} \cos \alpha$ $V_{z} = -gt + V_{0} \sin \alpha$						
	0.25	$a_z = -g$						
		$ec{P}=mec{a}$ $a_{ m x}=0$						
		$\sum \overrightarrow{F_{ext}} = m\vec{a}$						
		1 - دراسة حركة الحجر و كتابة المعادلات الزمنية للحركة						

الإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2016 الإجابة النموذجية لموضوع امتحان البكالوريا دورة: 30 ساعات و 30 دقيقة اختبار مادة: العلوم الفيزيائية الشعبة: علوم تجريبية المدة: ثلاث ساعات و 30 دقيقة

							نم	ب- جدول التقد		
	0.25	لتفاعل	$CH_3COOH(l) + C_3H_7OH(l) = CH_3COO-C_3H_7(l) + H_2OO-C_3H_7(l)$ معادلة التفاعل							
		ح٠ج	التقدم							
		ح.إ	0	0,2	0,2		0	0		
		ح.و	X	0,2 - x	0,2- x	2	X	X		
01		ح.ن	$\mathbf{X}_{\mathbf{f}}$	0,2 - x _f	0,2 - X _f	2	$\zeta_{ m f}$	X _f		
		التركيب المولي للمزيج التفاعلي: الكحول الحمض الأستر الماء								
	0.25		الماء	أستر	الا	الحمض	ر	الكحوا		
		0.12	? mol	0.12 mg	0.0	8 mol	0.08	mol		
	0.25									
	0.25	جـ- ثابت التوازن: k = 2,25								
	2×0.25	$r = \frac{x_f}{x_{max}} \times 100 = \frac{0.12}{0.2} \times 100 = 60\%$ النفاعل عدول ثانوي								
	0.25									
1.75				ОН						
1.73	2×0.25		CHa				propan-2-	-ol - ب		
	2×0.23	0								
	2×0.25		CLI							
	2×0.23		CH3—	C Etapasta da mathyla				lothyl		
		CH ₃ -CH-CH ₃ O CH ₃ -CH-CH ₃ O-CH-CH ₃ Etanoate de methylethyl CH ₃								
		CH₃								
	0.25				$Q_{ri} = \frac{0.2 \times 0.1}{0.1 \times 10^{-3}}$	دائى3 = 12	5- أ - كسر التفاعل الابتدائي3 -			
0.5	0.25	0.1×0.08 0.01×0.08 بيطور التفاعل في اتجاه الإماهة.								
	0.23						·			

اختبار مادة: العلوم الفيزيائية

العلامة		/ Matter + 11 \ 7 1 \ \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1								
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)								
0.25	0.25 0.25	التمرين الأول: (04 نقاط) 1 - التحول الكيميائي بطيء لأنه يمكن متابعته زمنيا (من رتبة الدقائق) 1 - الثنائيتان $0x$ الداخلتين في التفاعل: $0x$ $0x$ - الثنائيتان $0x$ $0x$ الداخلتين في التفاعل: $0x$								
0.75		المعادلة النصفية للأكسدة ب المعادلة النصفية للإرجاع								
	0.5	$2Ag^{+} + 2e^{-} = 2Ag$! $Cu = Cu^{2+} + 2e^{-}$								
0.75	0.5	$Cu + 2Ag^{+} = Cu^{2+} + 2Ag$ جدول النقدم: n_{1} n_{2} 0 0 0 0 0 0 0 0 0 0								
	0.25	$n_f(Ag) = 2x_{ m max}$: حساب التقدم الأعظمي: لدينا من جدول التقدم $n_f(Ag) = 2x_{ m max}$ و من البيان نجد: $n_f(Ag) = \frac{4.32}{108} = 0.04 mol$ ومنه: $n_f(Ag) = \frac{4.32}{108} = 0.04 mol$ ومنه: C_0 : من جدول التقدم:								
0.5	0.25	$n_f(Cu)=0.03mol$ بالتعویض نجد: $n_f(Cu)=n_0(Cu)-x_{\max}=rac{m}{M_{Cu}}-x_{\max}$ و منه: Cu منه محدو محدو منه تصبح:								
	0.25	$C_0 = \frac{2x_{\text{max}}}{V} = \frac{2 \times 0.02}{0.2} = 0.2 mol / L$ نجد: $C_0 V = 2x_{\text{max}}$: $n_0 (Ag) - 2x_{\text{max}} = 0$								
0.5	0.5	Ag^+ Cu Ag Cu^{2+} O								
	0.25	ع تحديد بترين من النب اللاز الله فالتفاطين في تتديم النبا								
0.5		-6 تعريف وتعيين $t_{1/2}$: هو الزمن اللازم لبلوغ التفاعل نصف تقدمه النهائي.								
	0.25	من البيان: $t_{1/2}=10~\mathrm{min}$ مع توضيح الطريقة.								
	0.5	$v(Ag) = \frac{dn(Ag)}{dt}$ عبارة السرعة اللحظية لتشكل الفضة: $\frac{dn(Ag)}{dt} = \frac{1}{M_{Ag}} \cdot \frac{dm(Ag)}{dt}$ ومنه: $n(Ag) = \frac{m(Ag)}{M_{Ag}}$: الدينا $n(Ag) = \frac{m(Ag)}{M_{Ag}}$								
0.75	0.25	بالتعويض نجد $v(Ag) = \frac{1}{M_{Ag}} \frac{dm(Ag)}{dt}$ وهو المطلوب $v(Ag) = 2.v$ وهو المطلوب $v(Ag) = 2.v$ الدينا $v(Ag) = 2.v$ الدينا $v(Ag) = 2.v$ الدينا $v(Ag) = 2.v$ الدينا $v(Ag) = 2.v$ التعويض نجد $v(Ag) = \frac{1}{2M} \frac{dm(Ag)}{dt} = \frac{1}{2 \times 108} \cdot \frac{3.5 \times 0.864}{10} = 1.4 \times 10^{-3} \ mol.mn^{-1}$ بالتعويض نجد: $v(Ag) = \frac{1}{2M} \frac{dm(Ag)}{dt} = \frac{1}{2 \times 108} \cdot \frac{3.5 \times 0.864}{10} = 1.4 \times 10^{-3} \ mol.mn^{-1}$								

		المحتبار ماده: العلوم الفيزيائية الشعبة/السلك (٢): علوم مجريبية
		التمرين الثاني: (04 نقاط)
	0.25	 1- تعریفات النظائر: هی ذرات من نفس العنصر لها نفس عدد البروتونات وتختلف فی عدد النیترونات.
0.75	0.25	- النصائر . هي درات من نعس العنصر على نعش عدد البرولونات وتحليف في عدد الليرونات . - النواة المشعة : هي نواة غير مستقرة تتفكك تلقائيا لتعطي نواة أكثر استقرارا
	0.25	- جسيمات β^- : هي عبارة عن إلكترونات ناتجة من تحول نيترونات إلى بروتونات
0.5	0.5	y=2 ، $x=3$ انجاد قيمتي كل من x,y : بتطبيق قانونا الإنحفاظ
0.5	0.5	$^{241}_{94}Pu { ightarrow}^A_ZAm + ^0_{-1}e$ عادلة التفكك: 3-
0.5	0.5	Z=95 , $A=241$ بتطبيق قانونا الانحفاظ نجد
		$^{241}_{94}Pu \rightarrow ^{241}_{95}Am + ^{0}_{-1}e$
	0.25	$A(t)=A_0e^{-\lambda t}$ علاقة: حسب قانون تناقص النشاط الإشعاعي -4
	0.25	$rac{A_0}{A(t)} = e^{\lambda.t}$ ومنه:
	0.25	$rac{A_0}{A(t_{1/2})} = 2$ ومنه: $A(t_{1/2}) = rac{A_0}{2}$ ومنه:
	0.5	$t_{1/2} = 5.5 \! imes \! 2.5 \! = \! 13.75 ans$ بالإسقاط على البيان نجد
2.25	0.5	$\lambda = rac{\ln 2}{t_{1/2}} = 0.05~ans^{-1}$ استنتاج قيمة ثابت التفكك:
2.23		
	0.5	$\frac{A(t)}{A_0} = f(t)$ جـ/ تمثیل بیان $\frac{A(t)}{A_0}$
		t(ans
0.5	0.5	E التمرين الثالث: (04) نقاط) 1 - رسم الدارة: 1 - رسم الدارة: 1 - المعادلة التفاضلية للتوتر بين طرفي المكثفة : 1 - حسب قانون التوترات: 1 -
	0.75	$uR_1 = R_1.i$, $i = \frac{dq}{dt}$, $q = C.u_C$: $uR_1 = R_1.i$, $i = \frac{dq}{dt}$, $q = C.u_C$: $uR_1 = R_1.i$, $i = \frac{dq}{dt}$, $q = C.u_C$: $uR_1 = R_1.i$, $i = \frac{dq}{dt}$, $q = C.u_C$: $uR_1 = R_1.i$, $i = \frac{dq}{dt}$, $q = C.u_C$: $uR_1 = R_1.i$, $i = \frac{dq}{dt}$, $q = C.u_C$: $uR_1 = R_1.i$, $i = \frac{dq}{dt}$, $i = $
		$u_C(t) = A(1-e)$ مو حن سمعانیہ سف میں۔ . $u_C(t) = A(1-e)$ مو

المعبه/السلك المعبه/السلك المعبه/السلك $ABe^{-Bt} + \frac{A}{R_1.C} - \frac{A}{R_1.C}e^{-B.t} = \frac{E}{R_1.C}$ بالتعويض نجد: $\frac{du_C}{dt} = ABe^{-Bt}$ 0.5 $B = \frac{1}{R \cdot C}$ ، A = E بالمطابقة نجد: $B = \frac{1}{0.004} = 250 \, s^{-1}$ و $A = 12 \, V$ بالمطابقة مع البيان نجد: 0.5 2.25 $R > R_1$ من أجل $u_C = g(t)$ $R > R_1$ 0.5 (4) هو ميل منحنى الشكل $\tau = C.R$: الدينا الشكل الشكل (3) $C = \frac{(3.2 - 1.6) \times 10^{-3}}{(1 - 0.5) \times 10^{3}} = 3.2 \times 10^{-6} F$ 0.25 $au=R_{\rm I}.C$: حساب مقاومة الناقل الأومى $R_{\rm I}$ من منحنى الشكل (3) لدينا 1.25 0.25 $R_1 = \frac{\tau_1}{C} = \frac{0.004}{3.2 \times 10^{-6}} = 1250 \,\Omega$ ومنه: ب- كيفية ربط المكثفتين: بما أن السعة المكافئة C أكبر من سعة المكثفة الأولي C_1 فإن الربط على 0.25 $C_2 = 3.2 - 1 = 2.2 \,\mu$ ومنه $C = C_1 + C_2$: حيث عبي حيث $C_2 = 3.2 - 1 = 2.2 \,\mu$ 0.5 التمرين الرابع: (04 نقاط) 1-1- تمثيل القوى: 0.5 0.5 $\sum \vec{F} = \vec{P} + \vec{T} + \vec{R} = m \cdot \vec{a}$ المعادلة التفاضلية: بتطبيق القانون الثاني لنيوتن -2 0.25 $A = \frac{k}{m}$: بالإسقاط نجد: $\frac{d^2x(t)}{dt^2} + \frac{k}{m}x(t) = 0$:بالإسقاط نجد 01 0.75 $X = 2 \times 2.5 = 5 \, cm$: السعة القيم: السعة -3 0.25 $T_0 = 2 \times 0.1 = 0.2 \, s$: الدور 0.25 t==0 s عندما يكون: $x(t)=X.\cos(\omega_0.t+\varphi)$ عندما يكون: 0.25 $\varphi=0$: أي أن $\cos(\varphi)=1$ ومنه: $x(0)=X.\cos(\varphi)=X$ 02 $\omega_0 = \frac{2\pi}{T_0} = 31.4 = 10.\pi \ rad \ / s$: نبض الحركة 0.25 $k = (\frac{2\pi}{T_0})^2 . m \approx 100 \ N/m$ نجد $T_0 = 2\pi \sqrt{\frac{m}{L}}$ ادینا : k 0.5 0.5 $x(t) = 5.\cos(10.\pi t)$... cm إلا منية: $x(t) = 5.\cos(10.\pi t)$ الشعبة/السلك (*): علوم تجريبية

اختبار مادة: العلوم الفيزيائية

			ى الضعيف.	جود الاحتكال	كة تتناقص لو	II- البيان المتوقع: سعة الحر					
	0.5			$\uparrow x(cm)$							
0.5		$\underbrace{\hspace{1cm}}_{t(s)}$									
	0.5	التمرين التجريبي: (04 نقاط) $V_0 = \frac{0.01 \times 50}{0.025} = 20 mL$ ومنه : $C_1.V_1 = C_0.V_0$ ومنه : $C_1.V_1 = C_0.V_0$									
	0.25					ب- البروتوكول التجريبي.					
1.25	0.25	(20mL)	اصة عيارية	50mI) ، ما	لة عيارية (لَـ	الزجاجيتان المستعملتان: حوجا					
	0.25	جـ معنى مصطلح عيارية: خط دائري في أعلى الزجاجية يدل على حجم المحلول عنده.									
	0.25	'	$C_6H_5COOH + H_2O = C_6H_5COO^- + H_3O^+$ 2. أ- معادلة التشرد في الماء:								
	0.25	*		- * *	/ C ₆ H ₅ COO	-					
	0.23	3	2			-					
01			$Qr = rac{\left C_6H_5COO^- ight \left H_3O^+ ight }{\left[C_6H_5COOH ight]}$: کسر التفاعل: لدینا								
	0.5	$K = Q_{rf} = \frac{\left[C_6 H_5 COO^-\right]_f \left[H_3 O^+\right]_f}{\left[C_6 H_5 COOH\right]_f} = \frac{(10^{-3.12})^2}{0.01 - 10^{-3.12}} = 6.23 \times 10^{-5}$ ڪسر التفاعل النهائي:									
	0.25			زيج متجانس	سي لجعل الم	3.أ- يستعمل المخلاط المغناطي					
	0.23	حجم الماء المضاف(mL)	0	10	40	ب- الجدول:					
	01	C(mol/L)	0,01	0,005	0,002						
1,75	01	pН	3,12	3,28	3,49						
		$ au_f$	0,076	0,105	0,162						
	0.25					- يقل تركيز المحلول					
	0.25	تزداد نسرة التقدم باضافة الماء									