الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2014

امتحان بكالوريا التعليم الثانوي

الشعب: آداب وفلسفة، لغات أجنبية

المدة: 02 سا و30د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

التمرين الأول: (05 نقاط)

- 1) عيّن باقى القسمة الاقليدية للعدد 28 على العدد 9
- $10^k \equiv 1[9]: k$ بيّن أنّه من أجل كل عدد طبيعي (2
- $4 \times 10^4 + 3 \times 10^3 + 2 \times 10^2 + 28 \equiv 1[9]$ استنتج أنّ: (9) استنتج
 - $2^3 \equiv -1[9]$ أ) تحقّق أنّ: (4)
- $2^{6n} + n 1 \equiv 0$ [9] عيّن الأعداد الطبيعية n بحيث:

التمرين الثاني: (06 نقاط)

عين الاقتراح الصحيح الوحيد من بين الاقتراحات الثلاثة، في كلّ حالة من الحالات الأربعة الآتية، مع التّعليل:

: هو (u_n) متتالية حسابية أساسها $u_2=1$ وحدّها $u_2=1$ الحد العام للمتتالية (u_n)

$$u_n = -5 + 3n$$
 ($= 7 + 3n$ ($= 1 + 3n$ (

n عدد طبيعي . المجموع $n+2+3+\cdots+n$ يساوي :

$$\frac{n^2+1}{2} \quad (\Rightarrow \qquad \qquad \frac{n(n-1)}{2} \quad (\Rightarrow \qquad \qquad \frac{n^2+n}{2} \quad (\uparrow$$

x+1 ، x ، x-2 الأعداد كون الأعداد x+1 ، x+1

 (v_n) هو: المتالية هندسية معرّفة على $\mathbb N$ هو: (v_n) هو العام (v_n) هو:

التمرين الثالث: (09 نقاط)

$$f(x) = \frac{2x+1}{x+2}$$
: كما يلي $\mathbb{R} - \{-2\}$ كما الدالة العددية المعرّفة على f

$$\cdot \left(O; \vec{i}, \vec{j} \right)$$
 المنحنى الممثّل للدالة f في المستوي المنسوب إلى المعلم المتعامد المتجانس f

$$f(x)=\alpha-rac{3}{x+2}:\mathbb{R}-\{-2\}$$
 مين العدد الحقيقي α بحيث من أجل كل x من أجل كل α

- عيّن النقط من المنحنى (C_f) التي إحداثياتها أعدادًا صحيحة.
- (3) احسب نهایة الدالة f عند کل حد من حدود مجالي تعریفها.

$$f'(x) = \frac{3}{(x+2)^2}$$
 : $\mathbb{R} - \{-2\}$ من أجل كل عدد حقيقي x من أجل كل عدد را أ (4

(f الدّالة المشتقّة للدالة f')

- f شكّل جدول تغيّرات الدالة
- . عين إحداثيات نقط تقاطع المنحنى (C_f) مع حاملي محوري الإحداثيات.
- -1 الفاصلة A عند النقطة A ذات الفاصلة (Δ) عند النقطة المماس (Δ) عند الفاصلة (Δ)
 - (Δ) بيّن أنّه يوجد مماس آخر (Δ') للمنحنى (C_f) يو ازي المستقيم
 - (C_t) ارسم المماس (Δ) والمنحنى (7

الموضوع الثاتي

التمرين الأول: (06 نقاط)

$$v_{n+1} = 5v_n + 4$$
 % المتتالية العددية المعرفة بما يلي: $v_0 = 1$ ومن أجل كل عدد طبيعي $v_0 = 1$

- V_3 v_2 , V_1 : (1
- $u_n = v_n + 1$ نضع من أجل كل عدد طبيعي (2

 $u_0=2$ وحدها الأول q=5 أ- بيّن أنّ (u_n) منتالية هندسية أساسها

n بدلالة v_n واستنتج بدلالة u_n بدلالة

 (u_n) جداء عوامل أوليّة واستنتج أنّه حد من حدود المنتالية واستنتج

$$S_n = u_0 + u_1 + \dots + u_{n-1}$$
: حيث $S_n = u_0 + u_1 + \dots + u_{n-1}$ أ- احسب بدلالة n المجموع (3

$$S'_{n} = V_{0} + V_{1} + \dots + V_{n-1}$$
 : حيث: S'_{n} حيث n المجموع S'_{n} المجموع S'_{n}

التمرين الثاني: (06 نقاط)

عيّن الاقتراح الصحيح من بين الاقتراحات الثلاثة في كلّ حالة من الحالات الخمسة مع التبرير:

الاقتراح (ج)	الاقتراح (ب)	الاقتراح (أ)		79
2	5	8	عدد قواسم العدد 1435 هو:	1
6	7	-1	ا إذا كان $a = -1$ فإنّ باقي قسمة a على 8 هو:	2
3	4	2	العددان 1435 و 2014 متوافقان بترديد:	3
$x^9 + y^9 \equiv 4[5]$	$x^9 + y^9 \equiv 2[5]$	$x^9 + y^9 \equiv 3[5]$	$y\equiv 2[5]$ و $x\equiv 2[5]$ فإن:	4
9 = 7[3]	9 = 7[2]	9 = 7 [6]	لدينا [6] 21 = 27 إذن:	5

التمرين الثالث: (08 نقاط)

نعتبر الدالة العددية f المعرفة على \mathbb{R} بتمثيلها البياني (C_f) في المستوي المنسوب إلى المعلم المتعامد المتجانس (T) و (C_f) مماس المنحنى (C_f) عند النقطة (C_f) كما في الشكل:

I) بقر اءة بيانية:

- 2) أدرس اتجاه تغير الدالة f على \mathbb{R} وشكل جدول تغير اتها.
 - (T) أ) اكتب معادلة للمماس (T
- (T) ادرس وضعیة (C_f) بالنسبة للمماس (C_f) ادرس وضعیة (C_f) بالنسبة للمنحنی (C_f) استنتج أنّ A هي نقطة الانعطاف للمنحني
 - f(x) > 5 عيّن حلول المتراجحة: 4
 - ال إذا علمت أنّ f معرفة على \mathbb{R} بالشكل:

. عددان حقیقیان $a: (x) = x^3 + ax^2 + b$

- b عيّن العددين a و a
- 2) تحقق من صحة إجاباتك السابقة حول:
 - f اتجاه تغير الداله f
 - (T) معادلة المماس
 - ج) نقطة الانعطاف A
 - f(x) > 5: 4 حلول المتراجحة:

